system. Friction cancellation was dealt with in the pressure track-
ing case, and the Karnopp plus Stribeck friction model used for
cancellation was verified. The experimental results showed that
the proposed control law and adaptation scheme are effective for
force/pressure tracking.
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The modal analysis approach to modeling of structures and
acoustic systems results in infinite-dimensional models. For con-
trol design purposes, these models are simplified by removing
higher frequency modes which lie out of the bandwidth of interest.
Truncation can considerably perturb the in-bandwidth zeros of
the truncated model. This paper suggests a method of minimizing
the effect of the removed higher order modes on the low frequency
dynamics of the truncated model by adding a zero frequency term
to the low order model of the system. [S0022-0434(00)01501-X]

1 Introduction

Modal analysis approach has been extensively used throughout
the literature to model dynamics of distributed parameter systems.
Such systems include, but are not limited to, flexible beams and
plates [1], slewing beams [2], piezoelectric laminate beams [3]
and acoustic ducts [4]. These systems share the property that dy-
namics of each one of them is described by a particular partial
differential equation. In the modal analysis approach the solution
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of these PDE’s is assumed to consist of an infinite number of
terms. Moreover, these terms are chosen to be orthogonal. Hence,
the modal analysis modeling of a system can result in an infinite-
dimensional model of that system.

In control design problems, one is often only interested in de-
signing a controller for a particular frequency range. In these situ-
ations, one approach is to remove the modes which correspond to
frequencies that lie out of the bandwidth of interest and only keep
the low frequency modes. To improve the in-bandwidth response
a number of out-of-bandwidth modes may also be kept. It is, of
course, of interest to work with a low order model since modern
controller design techniques result in controllers that are of the
same dimension as that of the plant.

It is known that truncation has the potential to perturb the in-
bandwidth zeros of the system. This problem is addressed in [5]
and was recently revisited [6,7]. The mode acceleration method
(see 350 of [5] and [6]) is concerned with capturing the effect of
higher frequency modes on the low frequency dynamics of the
system by adding a zero frequency term to the truncated model to
account for the compliance of the ignored modes. In this paper,
we allow for a zero frequency term to capture the effect of trun-
cated modes. However, this constant term is found such that the
‘H, norm of the resulting error system is minimized.

To this end, we point out that there are alternative methods for
modeling of distributed parameter systems. As an example, one
can point to the recent works of Pota and Alberts in modeling of
such systems using symbolic computations [8—10]. However, the
models that are obtained via modal analysis have the interesting
property that they describe spatial and temporal behavior of the
system. Such models can then be used in designing spatial con-
trollers [11-14].

2 Problem Statement

In general, modeling of a flexible structure via model analysis
technique results in a model that can be represented by:

G(s)=>

i=1

F,
s2+ w? ’ M

This is an infinite-dimensional transfer function due to the ex-
istence of an infinite number of modes. We notice that Eq. (1)
does not include any modal dampings. In reality, however, each
mode is lightly damped. Therefore, a more precise version of Eq.
(1) can be written as G(s)=3_,F, /s2+2§,-s+wi2. It is a diffi-
cult task to determine modal structural dampings using physical
principles. Therefore, {;’s are often determined by experiments. In
this paper, we ignore the effect of modal dampings. However, it is
straightforward to extend this work to include the effect of modal
dampings.

In a typical control design scenario, the designer is often inter-
ested only in a particular bandwidth. Therefore, an approximate
model of the system is needed that best represents the dynamics of
the system in the prescribed frequency range. This is often done
by truncating the model to

N
F;
Guls)=>,

2 2-
i=1 "t wj

@)

A drawback of this approach is that the truncated higher order
modes may contribute to the low frequency dynamics in the form
of distorting zero locations [6]. This problem can be rectified, to
some extent, by adding a zero frequency term to Gy(s). That is,

G(s)=Gy(s)+K ©)

where K=37 | |F;/w}. The logic behind this choice of K is
that at lower frequencies one can ignore the effect of dynamical
responses of higher order modes since they are much smaller than
the forced responses at those frequencies.
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This paper is an attempt to find an optimal value for K. In other
words, we will try to determine K such that the effect of higher
order modes on the low frequency dynamics is minimized in some
measure. Our objective here is to choose a value for K such that
the following cost function is minimized,

[(G(s)—G(s)W(s)l3 4

where ||f(s)||3= 1277 .|f(jw)|*dw. Here, G(s) and G(s) are
defined as in Egs. (1) and (3) and W(s) is an ideal low-pass
weighting function with its cutoff frequency w, chosen to lie
within the interval w.e (wy,wy(). That is, |W(jw)|=1 for
—w,.Sow<w, and zero elsewhere. The reason for this choice of W
will become clear soon. To this end, it should be clear that a K
chosen to minimize Eq. (4) will minimize the effect of out of
bandwidth dynamics of G(s) on G(s) in an ‘H, optimal sense.
Notice that the cost function (4) conveys no information on fre-
quencies higher than w...
It is easy to see that (4) is equivalent to

The fact that W is chosen to be an ideal low-pass filter with its
cutoff frequency lower than the first out-of-bandwidth pole of G,
guarantees that Eq. (5) will remain finite. Let G(s)
=37 v Fils*+ w?. 1t is straightforward to show that Eq. (5) is
equivalent to

2

) S)

2

- v
( > —2_K> W(s)

2
i=N+1 S T w;

IGWI5+ KX WIS —K(GW,W)+(W.GW)) (©6)

where (f,g)=127[7 .f*(jw)g(jw)dw. It can be verified that
the K that minimizes Eq. (6) is given by

_ (GW, WY+ (W,GW)

2[W2 @
_JZaRe(G(jw))|W(jw)[dw ®)
J2AW(jo)|Pdw
o © Fi . 2
f,,( DRV lm) [W(jw)|*dw
= ’ )

IZw(jo)Pdo

where Re(f) represents the real part of the complex number f.
Hence, to obtain the optimal K, one has to carry out the following
integration.

l D F,'

The optimal value of K is then found to be

o0
== — Inl
20, i §+1 0;

w;+w,

. (11)

K opt

w;— W,

Next, we extend our model correction technique to multivari-
able transfer functions. This is an important issue since in many
cases it may not be practical to achieve the required performance
by a single actuator and sensor. If a multiple number of actuators
and sensors are to be used, and the multivariable model is to be
truncated, it is essential to capture the effect of higher order
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modes on the remaining in-bandwidth modes, as we did in the
SISO case. In the multivariable case, the transfer function matrix
of the system is given by:

1

s2+w?

[F{™]. (12)

G(s>=§

Here, [F!""] represents a matrix whose (m,n)th element is
F" . Transfer function matrix G(s)=[G™"(s)] has an interesting
property. All of its individual transfer functions share similar
poles. However, the zeros can be different. Moreover, if the ac-
tuators and sensors are collocated, the diagonal transfer functions
will possess minimum-phase zeros only. However, the off-
diagonal transfer functions may have nonminimum-phase zeros
since they correspond to noncollocated actuators and sensors.

It is our intention to approximate G(s) by a finite number of
modes, say N modes only. In this case, however, we choose to
approximate the effect of higher order modes on the low-
frequency dynamics of G(s) by a constant matrix. That is, we
approximate (12) by

1

2
S'+w,-2

N
G(s):z1 [F"]+[k""]. (13)

Let K=[k""]. We will determine K such that the following
cost function is minimized:

J=W(s)(G(s)=G(s)3 (14)
where for a multivariable F,|F(s)|[3=1/2m[% trace{F*(jw)
XF(jw)}dw. Here, W is chosen to be a diagonal matrix, where
the diagonal elements are ideal low-pass filters W
=diag(w,w, ... ,w) and w is an ideal low-pass filter as described
above. The cost function (14) can be rewritten as J=|W(s)
X(G(s)—K)|; where G(s)=37_,.,1/s>+ ;[ F/"]. Therefore,
J=|WG|;+|WK|3— (WG, WK)+(WK,WG)) where (F,G)
=12m7[% ,trace{F*(jw)G(jw)}dw. The cost function can then
be written as:

~ 1 (=
J=|wG|3+ P f ' trace{K' W(jw)*W(jw)K}dw

I ~
- f,» (trace{G (jw)*W(jw)*W(jw)K}

+trace{K' W(jw)*W(jw)G(jo)})dw.

Differentiating J with respect to K (see p. 592 of [15]), we
obtain the optimum value of K.

Kopl:

3 -1
J: W(jw) *W(jw)dw)

X

j_ W(jw)*W(jw)Re{G(jw)}dw)

1 @ -
= T%fm[Re{G(jw)}dw

= 1 fwc d l [an]dw
2: 2 P i
2w, —w, i=N+1 ©0; — @~

oo
= —In
2wci:;+| W;

w;+w,
i c
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What this result implies is that one can use K, that was deter-
mined in Eq. (11) to approximate the effect of out-of-bandwidth
modes on the individual truncated transfer functions of Eq. (12).
The obtained multivariable transfer matrix will be optimal in the
sense of Eq. (14). This is an interesting result which is mainly due
to the fact that all individual transfer functions of Eq. (12) share
similar poles.

To this end, we point out that this work does not address the
issue of model parameter uncertainty and disturbances. Indeed, if
there are uncertainties associated with modal parameters of the
structures, the analysis presented in this paper has to be modified
to accommodate such parameter deviations.

3 Example: A Simply-Supported Beam

In this section, we apply the approximation mechanism devel-
oped in Sec. 2 to a simple flexible structure. The structure consists
of a flexible beam which is pinned at its both ends as shown in
Fig. 1.

Here, y(¢,r) denotes the elastic deformation of the beam as
measured from the rest position. The elastic deflection y(z,r) is
governed by the classical Bernoulli—-Euler beam equation and its
corresponding pinned boundary conditions. A transfer function for
the beam can be found to be [1]

di(r1) éi(r)

(52+w?)

$(s.1) <
Ty & (15

where ¢,(r)= V2/pAL sin(i7rr/L) and the corresponding natural
frequencies are w;=(i7/L)*\EI/pA.

Fig. 1 A simply supported flexible beam

Bode Diagrams

30 mode model
2 mode model !
corrected model | Mt V.

Phase (deg); Magnitude (dB})

Frequency (rad/sec)

Fig. 2 Comparison of the frequency responses of the thirty
mode model of the beam with its two mode model and a two
mode model with a correcting zero-frequency term
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Here, E, I, A, u(t,r), and p represent, respectively, the Young’s
modulus, moment of inertia, cross-sectional area, external force
per unit length, and the linear mass density of the beam. This
system consists of an infinite number of modes and it describes
the elastic deflection of the entire beam due to a point force ap-
plied at r;.

The parameters of the beam are: L=beam length=1.3m, r,
=0.075m, r,=r,, pA=0.6265kg/m, EI=5.329 Nm?, where r,
is the point at which the sensor is located. Since the actuator and
the sensor are located at the same position, this is a collocated
system.

In Fig. 2, we compare the frequency response of the two mode
system and the system based on the first thirty modes in the fre-
quency range of up to 100 rad/s, i.e., w.=100rad/s. Figure 2 also
plots the corrected version of the two mode system based on the
procedure developed in Section 2, i.e., by adding the optimal zero
frequency term (11) to the two mode trucated model of the beam.
The correction zero frequency term captures the effect of modes 3
to 30 on the two mode dynamics of the system. It can be observed
that the corrected two mode system approximates the thirty mode
system reasonably well in the frequency range of interest.
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