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Abstract

The modal approach to modeling of structures and acoustic systems results in in"nite-dimensional models. For control design
purposes, these models are simpli"ed by removing higher frequency modes which lie out of the bandwidth of interest. Truncation can
considerably perturb zeros of the truncated model. This paper suggests a method of minimizing the e!ect of removed higher-order
modes on the spatial low-frequency dynamics of the truncated model by adding a spatial zero-frequency term to the low-order model
of the system. The paper also studies implications of this approach on spatial H

=
control of reverberant systems. ( 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The modal analysis approach has been extensively
used throughout the literature to model dynamics of
distributed parameter systems. Such systems include, but
are not limited to, #exible beams and plates (Meirovitch,
1986), slewing beams (Fraser & Daniel, 1991; Book &
Hastings, 1987), piezoelectric laminate beams (Alberts
& Colvin, 1991) and acoustic ducts (Hong et al., 1996).
These systems share the property that dynamics of each
one of them is described by a particular partial di!eren-
tial equation. In this modeling technique the solutions of
these partial di!erential equations are assumed to consist
of an in"nite number of terms. Moreover, these terms are
chosen to be orthogonal. Hence, modeling of a system
using this approach can result in an in"nite-dimensional
model.

In control design problems, one is often only interested
in designing a controller for a particular frequency range.

In these situations, it is a common practice to remove the
modes which correspond to frequencies that lie out of the
bandwidth of interest and only keep the modes which
directly contribute to the low-frequency dynamics of the
system. This model is then used to design a controller. If
such a controller is implemented on the system, say in the
laboratory, the closed-loop performance of the system
can be considerably di!erent from the theoretical predic-
tions. This is mainly due to the fact that although the
poles of the truncated system are at the correct frequen-
cies, the zeros can be far away from where they should be.
Therefore, it is natural to expect that a controller de-
signed for the truncated system, may not perform well
when implemented on the real system since the closed
loop performance of the system is largely dictated by the
open-loop zeros.

To this end, we point out that there are alternative
methods to the modal approach for modeling of distrib-
uted parameter systems. As an example, one can point to
the recent works of Pota and Alberts in modeling of such
systems using symbolic computations (Pota & Alberts,
1995, 1997; Alberts, DuBois & Pota, 1995). However, the
modal models have the interesting property that they
describe spatial and temporal behavior of the system.
Such models can then be used in designing spatial
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controllers as noted in Moheimani, Pota and Petersen
(1997a,b, 1999, 1998a,b)

The concept of Spatial Control is concerned with using
the spatial information embedded in the dynamical mod-
els of structures. These models are derived using the modal
analysis approach. This information is then used in the
controller design phase such that a level of performance is
guaranteed for the entire structure. The spatial controller
design methodologies suggested in Moheimani et al.
(1997a,b, 1998a, 1999), result in controllers that are of the
same dimension as that of the dynamical system. There-
fore, it is natural to reduce the order of model used in the
controller design phase. Moheimani et al. (1999) attempts
to address this issue through a spatial balanced model
reduction approach. The procedure suggested in this arti-
cle, however, is di!erent to Moheimani et al. (1999) in that
the spatial DC content of the truncated model of the
system is corrected in an optimal way. A similar technique
was used in Moheimani (1999) to correct point-wise trun-
cated models of reverberant systems when spatial charac-
teristics of the system is not of interest.

In this paper, we show that the spatial e!ect of the
truncated modes on the low-frequency dynamics of the
system can be captured by adding a spatial zero-fre-
quency term to the truncated model of the system. More-
over, we explain how this term can be found such that the
spatial H

2
norm of the error system is minimized. Fur-

thermore, we will show that by embedding these spatial
zero frequency terms in the truncated models of reverber-
ant systems, the singularity problem which naturally
occurs in spatial H

=
control of these systems is avoided.

The remainder of the paper continues as follows. In
Section 2 we brie#y review the modal analysis approach
to modeling of reverberant systems. We will mention
a number of systems whose dynamical models can be
obtained by employing the modal analysis technique. We
will also show that these models have the distinct prop-
erty that they describe the spatial as well as temporal
behavior of the system. In Section 3 we address the
problem of minimizing the e!ect of out of bandwidth
modes on the truncated models of a particular class of
reverberant systems by adding a spatial zero-frequency
term to the truncated model. To do this, we introduce the
notion of Spatial H

2
norm, which is a natural extension

of the H
2

norm to the particular class of systems that are
studied in this paper. In Section 4, we extend the results
of Section 3 to the case of systems with multiple inputs.
Section 5 studies the implications of this modeling tech-
nique on the spatial H

=
control of reverberant plants.

Finally, Section 6 contains an illustrative example.

2. Modal analysis

In this section, we review the mathematical basis
upon which a large number of reverberant systems are

modeled. We consider a partial di!erential equation
described by

LMy(t, r)N#MG
L2y(t, r)

Lt2 H"f (t, r). (2.1)

Here, r is de"ned over a domain R, L is a linear
homogeneous di!erential operator of order 2p, M is
a linear homogeneous di!erential operator of order 2q,
q4p and f (t, r) is the system input, which could be
spatially distributed over R. Corresponding to this
partial di!erential equation are the following boundary
conditions:

B
i
My(t, r)N"0, i"1, 2,2, p, r3R. (2.2)

We notice that (2.1) and (2.2) describe spatial and
temporal behavior of y. It is our intention to explain how
a model of y can be derived that captures the spatial and
temporal characteristics of (2.1) and (2.2). The modal
analysis is concerned with assuming a solution for (2.1) in
the form

y(t, r)"
=
+
i/1

/
i
(r)q

i
(t). (2.3)

Here /
i
( ) ) are the eigenfunctions that are obtained by

solving the eigenvalue problem associated with (2.1).
That is,LM>(r)N"u2MM>(r)N and its associated bound-
ary conditions,B

i
"0, i"1, 2,2 . In the modal analysis

literature, /
i
's are often referred to as mode shapes. The

mode-shapes are chosen to satisfy the following ortho-
gonality conditions:

PR/
i
(r)LM/

j
(r)N dr"d

ij
u2

i
, (2.4)

PR/
i
(r)MM/

j
(r)N dr"d

ij
, (2.5)

where d
ij

is the Kronecker delta function, i.e., d
ij
"1 for

i"j, and zero otherwise.
Substituting (2.3) in (2.1), we obtain

LG
=
+
i/1

/
i
(r)q

i
(t)H#MG

L2
Lt2

=
+
i/1

/
i
(r)q

i
(t)H"f (t, r). (2.6)

Multiplying both sides of (2.6) by /
j
(r), integrating

over the domain R and taking advantage of the ortho-
gonality conditions (2.4) and (2.5), we obtain an in"nite
number of decoupled second-order ordinary di!erential
equations: qK

i
(t)#u2

i
q
i
(t)"Q

i
(t), i"1, 2,2, where

Q
i
(t)":R/

i
(r) f (t, r) dr. In many cases, Q

i
(t) can be writ-

ten as Q
i
(t)"F

i
u(t) where u(t) is the input of the system.

That is, f (t, r) can be decomposed into its spatial and
temporal components. Taking the Laplace transform of
the second-order di!erential equations we obtain the
input}output equation of the system in terms of a trans-
fer function: G(s, r)"+=

i/1
/
i
(r)F

i
/(s2#u2

i
).
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Fig. 1. A simply supported #exible beam.

As explained earlier, there are a large number of sys-
tems whose models can be obtained using the above
technique. Now, we mention one of these systems that
satisfy (2.1) and (2.2), and hence, modal analysis can be
employed to derive a model for this system. The system is
a simply supported beam that is subject to a point force.

Consider a simply supported beam as depicted in
Fig. 1. Here, y(t, r) denotes the elastic deformation of
the beam as measured from the rest position. The
elastic de#ection y(t, r) is governed by the classical
Bernoulli}Euler beam equation (Meirovitch, 1986):

L2
Lr2CEI

L2y(t, r)

Lr2 D#oA
L2y(t, r)

Lt2
"u(t)d(r!r

1
), (2.7)

where E, I, A, u(t)d(r!r
1
) and o represent, respectively,

the Young's modulus, moment of inertia, cross-section
area, external force applied at r

1
, and the linear mass

density of the beam.
Pinned}pinned beam boundary conditions are

y(t, 0)"0, y(t,¸)"0, EI
L2y(t, r)

Lr2 K
r/0

"0,

EI
L2y(t, r)

Lr2 K
r/L

"0. (2.8)

The "rst two boundary conditions state that there are no
movements at the two ends of the beam and the last two
conditions state that the beam curvatures at both ends
are zero.

Comparing (2.7) and (2.8) with (2.1) and (2.2), we
notice that L"(d2/dr2)(EI(d2/dr2)); M"oA, B

1
"1;

B
2
"EI(d2/dr2) and f (t, r)"u(t)d(r!r

1
).

Assuming a solution of form (2.3) and following the
procedure that was explained earlier, we can "nd a trans-
fer function for this system. The eigenfunctions are
chosen to be orthogonal according to the condition,

P
L

0

/
i
(r)/

j
(r)oAdr"d

ij
. (2.9)

The transfer function between applied force ;(s) and the
elastic de#ection of the beam y( (s, r) is given by (Krishnan
and Vidyasagar, 1987):

y( (s, r)

;(s)
"

=
+
i/1

/
i
(r
1
)/

i
(r)

(s2#u2
i
)
. (2.10)

For the pinned}pinned beam system in Fig. 1 the mode
functions are given by (Meirovitch, 1986)

/
i
(r)"S

2

oA¸

sinA
ipr

¸ B (2.11)

and the corresponding natural frequencies are u
i
"

(ip/¸)2JEI/oA.

3. Statement of the problem

In general, the model of a reverberant system, such as
a #exible structure consists of an in"nite number of
terms. Let the transfer function G(s) be as follows:

G(s, r)"
=
+
i/1

F
i
/
i
(r)

s2#u2
i

, (3.1)

where r belongs to a known set, i.e., r3R. For a beam,
this would be an interval, i.e. R"[0,¸], where ¸ is the
length of the beam. For a plate, R would be a
two-dimensional set, R"M(r

1
, r

2
)3R: r

1
3[0,¸

1
],

r
2
3[0,¸

2
]N, where ¸

1
and ¸

2
represent the width and

the length of the plate. The orthogonality condition cor-
responding to (3.1) is as follows:

PR/
i
(r)/

j
(r) dr"'2

i
d
ij
. (3.2)

This orthogonality condition is a particular case of
(2.5), which holds for a large number of systems such as
beams and plates with uniform mass distribution, acous-
tic enclosures with uniform cross sections, uniform
strings, etc.

This is an in"nite-dimensional transfer function due to
the existence of an in"nite number of modes. Moreover,
G describes the spatial as well as the temporal behavior of
the structure. In a typical control design scenario, the
designer is often interested only in a particular band-
width. Therefore, an approximate model of the system is
needed that best represents the dynamics of the system in
the prescribed frequency range. Hence, a lower-order
dynamical model is needed. A natural choice in this case
is to simply ignore the modes which correspond to the
frequencies that lie outside of the bandwidth of interest.
For instance, if u

N`1
is larger than the highest frequency

of interest, one may choose to approximate G(s, r) by

G
N
(s, r)"

N
+
i/1

F
i
/(r)

s2#u2
i

. (3.3)

This seems to be the mainstream approach in simplify-
ing the dynamics of reverberant systems as explained in
Clark (1997). A drawback of this approximation is that
the truncated higher-order modes may contribute to the
low-frequency dynamics, mainly in the form of distorting
zero locations. Furthermore, these removed modes could
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signi"cantly distort the spatial characteristics of the
low-order model. Therefore, an approximate low-order
model is needed that best captures the e!ect of truncated
modes on the temporal and spatial dynamics of the
structure.

Reference Clark (1997) suggests a way of dealing with
this problem when the spatial behavior of the structure is
not of importance i.e., when the observation point is set
at a particular position along the structure. In the aero-
elasticity literature this approach is referred to as the
mode acceleration method (see p. 350 of Bisplingho!
& Ashley, 1962). The idea is that given r, e.g. r"r

2
, one

can allow for a constant feed-through term in G
N
(s, r

2
) to

account for the compliance of the truncated higher-order
modes of G(s, r

2
). That is, to approximate G(s, r

2
) by

GK (s, r
2
)"G

N
(s, r

2
)#K, (3.4)

where K"+=
i/N`1

F
i
/
i
(r
2
)/u2

i
. The logic behind this

choice of K is that at lower frequencies one can ignore the
e!ect of dynamical responses of higher-order modes since
they are much smaller than the force responses at those
frequencies. Although an approximation, Clark (1997)
shows that K is a good representation of the e!ect of
higher-order modes on G

N
(s, r

2
).

Keeping this in mind, it is natural to extend this
approach to a more general transfer function such as
(3.1). In this case, (3.4) can be modi"ed to GK (s, r)"
G

N
(s, r)#K(r) where

K(r)"
=
+

i/N`1

F
i

u2
i

/
i
(r). (3.5)

Adding this term to the truncated model can signi"-
cantly correct the in-bandwidth spatial dynamics of the
system. However, this model correction is by no means
optimal. This paper is an attempt to "nd an optimal
value for K such that the e!ect of the truncated higher-
order modes on the low-frequency dynamical model of
the structure is minimized and the spatial characteristic
of the model is best preserved. To this end, we introduce
the notion of spatial H

2
norm of a single-input system

(see also Moheimani & Fu, 1998).

De5nition 3.1. The spatial H
2

norm of a single input
transfer function G(s, r), with r3R is de"ned to be

|G(s, r)}2
2
"

1

2pP
=

~=
PR DG( ju, r)D2drdu. (3.6)

Notice that if G(s, r) represents the dynamics of a beam
such as the simply supported beam of Section 2, then
|G(s, r)}2

2
is a measure of the volume underneath the

surface de"ned by DG( ju, r)D2. Hence, this is a natural
extension of the standard H

2
norm of linear systems to

systems of form (3.1). Similar interpretations can be made
for transfer functions of plates, etc.

Our approach to enhancing the approximation made
by truncating the higher-order modes of (3.1) is to add
a spatially distributed zero-frequency term to the "rst
N modes of (3.1). That is, to approximate (3.1) by

GK (s, r)"
N
+
i/1

F
i
/
i
(r)

s2#u2
i

#

=
+

i/N`1

k
i
/
i
(r). (3.7)

This choice of the zero-frequency term is inspired by
(3.5). However, unlike (3.5) we "nd the parameters k

i
,

i"N#1,N#2,2 such that the following spatial cost
function is minimized:

J"|(G(s, r)!GK (s, r))=(s, r)}2
2
. (3.8)

Here, G and GK are de"ned as in (3.1) and (3.7) and
=(s, r) is an ideal low-pass weighting function distributed
spatially over R with its cut-o! frequency u

#
chosen to

lie within the interval u
#
3(u

N
,u

N`1
). That is,

D=( ju, r)D"1 for !u
#
4u4u

#
, r3R and 0 else-

where. The reason for this choice of= will be explained
soon. To this end, it should be clear that k

i
's chosen

to minimize (3.8) will minimize the e!ect of out-of-band-
width dynamics of G(s, r) on GK (s, r) in a spatial H

2
opti-

mal sense. Therefore, guaranteeing that the reduced-
order model GK will best represent the frequency response
of G while preserving its spatial characteristics.

Theorem 3.1. Consider the system dexned by (3.1), its
approximation (3.7) and the spatial cost function (3.8). The
parameters k

i
, i"N#1,N#2,2 that minimize (3.8)

are given by

k
i
"

F
i

2u
#
u

i

lnA
u

i
#u

#
u

i
!u

#
B, i"N#1,N#2,2 . (3.9)

Proof. It is straightforward to verify that (3.8) is equiva-
lent to

J"TTA
=
+

i/N`1

F
i
/(r)

s2#u2
i

!

=
+

i/N`1

k
i
/(r)B=(s, r)UU

2

2

. (3.10)

The fact that = is chosen to be an ideal spatial low-
pass "lter with its cut-o! frequency lower than the "rst
out-of-bandwidth pole of G, i.e., u

N`1
, guarantees that

(3.10) will remain "nite. The cost function is then equiva-
lent to

J"
1

2pP
u#

~u#
PR K

=
+

i/N`1

F
i
/

i
(r)

u2
i
!u2 K

2
dr du

!2]
1

2pP
u#

~u#
PRA

=
+

i/N`1

F
i
/
i
(r)

u2
i
!u2B

]A
=
+

i/N`1

k
i
/
i
(r)Bdr du

#

1

2pP
u#

~u#
PRA

=
+

i/N`1

k
i
/

i
(r)B

2
dr du,
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"

1

2pP
u#

~u#
PR K

=
+

i/N`1

F
i
/

i
(r)

u2
i
!u2 K

2
dr du

!2A
1

2pP
u#

~u#

=
+

i/N`1

F
i
k
i
'2

i
u2

i
!u2Bdu

#

1

2pP
u#

~u#

=
+

i/N`1

k2
i
'2

i
du,

where we have used the orthogonality property of the
mode-shapes (3.2). The optimal set of parameters k

i
,

i"N#1,N#2,2 can now be determined via setting
the derivatives of J with respect to k

i
equal to zero, i.e.,

LJ/Lk
i
"0. We then "nd, k

i
"(1/2u

#
'2

i
):u#

~u#
F
i
'2

i
/

(u2
i
!u2) du which is equivalent to k

i
"(F

i
/2u

#
u

i
)

ln ((u
i
#u

#
)/(u

i
!u

#
)). h

At this point, we intend to demonstrate how the
K

i
obtained from Theorem 3.1 is related to the value of

K
i
obtained from (3.5). We know that for x'0, the term

ln(x) can be expanded as (see p. 52 of Gradsteyn
& Ryshik, 1994): ln(x)"2+=

n/1
1

2n~1
((x!1)/(x#1))(2n~1).

If we use the "rst term of the series to approximate
ln((u

i
#u

#
)/(u

i
!u

#
)) in (3.9) we obtain, k

i
"

+=
i/N`1

F
i
/u2

i
. Hence, we recover (3.5). Therefore, the

value of k
i
suggested by (3.5) approximates the optimal

k
i
which minimizes (3.8).
To this end, we point out that the analysis given here

ignores the e!ect of modal dampings. There are two
reasons for this. First, it is a di$cult exercise to determine
modal dampings during the modeling phase if the modal
analysis is to be used. Second, every mode of a reverber-
ant system is very lightly damped. Therefore, it is sensible
to model the structure using the modal analysis tech-
nique, then use the approximation method explained
above to correct the in-bandwidth dynamics of the
model, and "nally measure the damping associated with
each in-bandwidth mode. These dampings can then be
easily embedded in the approximate model of the struc-
ture. It should be pointed out that if the modal dampings
are known for a large number of modes, it is readily
possible to include the dampings in the model and carry
out the optimization procedure explained above with
some modi"cations. This approach, however, is not rec-
ommended. Imagine one wishes to "nd a three-mode
approximation of a 30-mode system. In this case, one
needs to determine modal dampings for the "rst 30
modes. However, if the procedure discussed earlier is
employed, one only needs to know the "rst three modal
dampings.

In Section 6, we will demonstrate how e!ective this
approximation can be in capturing the e!ect of higher-
order modes on the frequency response of the truncated
system. Moreover, we will compare the two approaches.
But "rst, we extend the results of this section to the case
of multi-input systems.

4. Extension to multi-input systems

In this section, we extend the procedure developed in
Section 2, to the case of reverberant systems that are
subject to more than one actuator. The transfer matrix is
assumed to be of the form

G(s, r)"
=
+
i/1

/
i
(r)

s2#u2
i

H
i
. (4.1)

Here, H
i
"[Fi

1
Fi

2 2 Fi
m
] where m is the number of

actuators. Moreover, /
i
's are assumed to satisfy similar

orthogonality conditions, i.e., (3.2). For the simply sup-
ported beam of Fig. 2 which is subject to m point forces at
r
1
,2, r

m
, this amounts to Fi

s
"/

i
(r
s
)/oA, s"1, 2,2,m

where /
i
(r) is given by (2.11).

In parallel with Section 2, we approximate G(s, r) with

GK (s, r)"G
N
(s, r)#"(r), (4.2)

where "(r)"+=
i/N`1

/
i
(r)K

i
and K

i
"[ki

1
ki
2 2 ki

m
].

Now, we are in a position where we can de"ne the spatial
H

2
norm of a multi-input system such as (4.1).

De5nition 4.1. Spatial H
2

norm of a multi-input system
is de"ned to be

|G(s, r)}2
2
"

1

2pP
=

~=
PRtrMG( ju, r)HG( ju, r)N drdu,

where trMMN represents the trace of matrix M.

Next, we consider the spatial cost function

J"|=(s, r)(G(s, r)!GK (s, r))}2
2
, (4.3)

where G and GK are de"ned as in (4.1) and (4.2). The
problem here is to determine the K

i
, i"1, 2,2 that

minimizes the spatial cost function (4.3).

Theorem 4.1. Consider the multi-input system (4.1) and
its corresponding approximation (4.2). Then the K

i
,

i"1, 2,2 that minimize (4.3) are given by

K
i
"

1

2u
#
u

i

lnA
u

i
#u

#
u

i
!u

#
BHi

, i"1, 2,2 . (4.4)

Proof. It is straight-forward to show that the spatial cost
function J is equivalent to

J";=( ju, r)GI ( ju, r)<2
2

#

1

2pP
=

~=
PRtrM"(r)@=( ju, r)H=( ju, r)"(r)Ndr du

!2]
1

2pP
=

~=
PR(trMGI ( ju, r)H

]=( ju, r)H=( ju, r)"(r)N) drdu,
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Fig. 2. A simply supported beam with m point forces.

where GI (s, r)"+=
i/N`1

/
i
(r)/(s2#u2

i
)H

i
. This, in turn,

can be re-written as

J"|=( ju)GI (ju, r)}2
2
#

1

2pP
u#

~u#
PRtrGA

=
+

i/N`1

/
i
(r)K@

iB
]A

=
+
j/1

/
j
(r)K

jBHdr du

!2]
1

2pP
u#

~u#
PRAtrGA

=
+

i/N`1

/
i
(r)

u2
i
!u2

H@
iB

]A
=
+
j/1

/
j
(r)K

jBHBdrdu.

Applying the orthogonality conditions to this expres-
sion for J, we obtain

J"|=( ju)GI ( ju, r)}2
2
#

1

2pP
u#

~u#

trG
=
+

i/N`1

'2
i
K@

i
K

iHdu

!2]
1

2pP
u#

~u#

trG
=
+

i/N`1

'2
i

u2
i
!u2

H@
i
K

iH
"|=( ju)GI ( ju, r)}2

2
#2u

#
]

1

2p
trG

=
+

i/N`1

'2
i
K@

i
K

iH
!2]

1

2p
trG

=
+

i/N`1

'2
i

u
i

lnA
u

i
#u

#
u

i
!u

#
BH@

i
K

iH.
Di!erentiating J with respect to K

i
(see p. 592 of

Lewis, 1992), the optimum value of K
i

is found to be:
K

i
"(1/2u

#
u

i
) ln((u

i
#u

#
)/(u

i
!u

#
))H

i
. h

Comparing the results of Theorems 4.1, we make the
following observation.

Observation 4.1. Consider the multi-input system (4.1),
and approximate each individual transfer function using
the result of Theorem 3.1. Then the resulting transfer
matrix is optimal in the sense of (4.3).

5. Implications on spatial H
=

control of reverberant
plants

The problem of spatial H
=

control of reverberant
plants is re-visited in this section. Consider the following

dynamical system:

x5 (t)"Ax(t)#B
1
w(t)#B

2
u(t),

z(t, r)"C
1
(r)x(t)#D

12
(r)u(t), (5.1)

y(t)"C
2
x(t)#D

21
w(t),

where x3Rn is the state, w3Rp is the disturbance input,
u3Rm is the control input, z is the spatial error output
and y3Rl is the measured output. We also assume that
r3R. The spatial H

=
control problem for this system is

de"ned as follows.
The Spatial H

=
Control problem: Design a controller

x5
k
(t)"A

k
x
k
(t)#B

K
y(t),

u(t)"C
k
x
k
(t)#D

k
y(t)

such that the closed-loop system satis"es

inf
K( > )|U

sup
w( > )|L2 *0,=)

J
=
(c2, (5.2)

where ; is the set of all stabilizing controllers and

J
=
"

:=
0

:Rz(t, r)@Q(r)z(t, r) drdt

:=
0
w(t)@w(t) dt

. (5.3)

Here Q(r) is a spatial weighting function that empha-
sizes the subset of R over which disturbance rejection is
of importance. It should be clear that the spatialH

=
con-

troller designed to meet the performance index (5.2) and
(5.3) guarantees a level of disturbance rejection over the
entire R in an average sense while emphasizing a subset
of R de"ned by Q(r).

We have the following theorem:

Theorem 5.1. Consider system (5.1) and its corresponding
spatial H

=
control problem. This problem is equivalent to

a standard H
=

control problem for the following system:

x5 (t)"Ax(t)#B
1
w(t)#B

2
u(t),

z8 (t)"%x(t)##u(t),

y(t)"C
2
x(t)#D

21
w(t), (5.4)

where [% #]"!, and ! is any matrix that satisxes

!@!"PRC
C(r)@

D
12

(r)@DQ(r)[C(r) D
12

(r)] dr. (5.5)

Proof. A detailed proof is not given here. However, it is
pointed out that the proof is based on the observation
that :Rz(t, r)@Q(r)z(t, r) dr"z8 (t)@z8 (t). For more in-dept
coverage of spatial H

=
norm and its properties, the

reader is referred to Moheimani et al. (1997a, 1999). h

To make our motivation for studying this problem
clearer, consider the disturbance rejection problem de-
picted in Fig. 3. Here, the objective is to reduce the e!ect
of the disturbance force w over the entire beam. In this
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Fig. 3. Spatial H
=

control of a beam.

Fig. 4. Spatial frequency response of the beam based on a 30-mode
model.

case, the transfer functions from w and u to the elastic
de#ection of the beam can be modeled as

G
u
(s, r)"

=
+
i/1

F
i
/
i
(r)

s2#2f
i
u

i
s#u2

i

, (5.6)

G
w
(s, r)"

=
+
i/1

G
i
/
i
(r)

s2#2f
i
u

i
s#u2

i

, (5.7)

where F
i

and G
i

can be determined as explained in
Section 2, i.e., F

i
"/

i
(r
u
) and G

i
"/

i
(r
y
). In this case, the

problem of designing a controller to reduce the e!ect of
the disturbance force w(t) over the entire body of the
beam can be cast into a spatial H

=
control framework.

This problem can then be reduced to an ordinary
H

=
control problem that, in turn, can be solved using

standard software (e.g., Chiang & Safanov, 1994). How-
ever, if the transfer functions (5.6) and (5.7) are simply
truncated by ignoring the out-of-bandwidth modes, the
resulting H

=
control problem will be singular. This is

the di$culty that was addressed in Moheimani et al.
(1997a). This di$culty can be avoided if the truncated
higher-order terms are approximated by a zero-
frequency term as explained earlier in this paper. If the
"rst N modes are chosen to represent the in-bandwidth
dynamics of the structure, G

u
and G

w
can be approxi-

mated by

G
u
(s, r)"

N
+
i/1

F
i
/
i
(r)

s2#2f
i
u

i
s#u2

i

#

=
+
i/1

k
i
/

i
(r), (5.8)

G
w
(s, r)"

N
+
i/1

G
i
/
i
(r)

s2#2f
i
u

i
s#u2

i

#

=
+
i/1

l
i
/
i
(r), (5.9)

where k
i
and l

i
, i"N#1, N#2,2 are determined as

explained in Theorem 3.1. Then the state-space model
corresponding to the spatial H

=
control problem can be

de"ned as in (5.1), with

A"diagAC
0 1

!u2
1

!2f
1
u

1
D,2,

C
0 1

!u2
N

!2f
N
u

N
DB,

B@
1
"[0 F

1 2 0 F
N
];

B@
2
"[0 G

1 2 0 G
N
],

C
1
(r)"[/

1
(r) 0 2 /

N
(r) 0],

C
2
"[/

1
(r
w
) 0 2 /

N
(r
w
) 0],

D
12

(r)"
=
+
i/1

k
i
/
i
(r); D

21
"

=
+
i/1

l
i
/
i
(r
y
).

Then, it can be shown that the spatial H
=

control
problem is equivalent to an ordinary H

=
control prob-

lem for system (5.4) where % is a (2N#1)](2N#1)
matrix and # is a (2N#2)]1 vector:

%"diagAC
'

1
0

0 0D,2,C
'

N
0

0 0DB,

#"C
0
2NC1

(+=
i/N`1

k
i
'2

i
)1@2D.

6. An illustrative example

In this section, we apply the model correction method
which was developed in Section 4 to a simply supported
beam model. The beam is shown in Fig. 1. The para-
meters of the beam are: ¸"Beam Length"1.3 m,
r
1
"0.05 m, oA"0.6265 kg/m, EI"5.329 N m2.

Moreover, in our simulations we allow for a damping
ratio of 0.3% for all the modes.

In this example, we are only interested in the "rst two
modes of the beam. Fig. 4 shows the spatial frequency
response of the beam up to a frequency of 100 rad/s. The
model is obtained using the "rst 30 pinned}pinned
modes. Fig. 5 shows the spatial frequency response of the
beam using only the "rst two modes. To have a clear
picture of the spatial error caused by truncating the
higher frequency modes, we plot the frequency response
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Fig. 5. Spatial frequency response of the beam based on a two-mode
model.

Fig. 6. Spatial frequency response of the error system (30-mode model
and two-mode model).

Fig. 7. Spatial frequency response of the beam based on two-mode
model and a correction term.

Fig. 8. Spatial frequency response of the error system (30-mode model
and two-mode model plus the correction term).

of the error system in Fig. 6. Now, we approximate
the truncated higher-order modes by a spatial zero-
frequency term as explained in the Section 4. The spatial
frequency response of this new system is plotted in Fig. 7.
Finally, we plot the spatial frequency response of the
error system, i.e., the 30-mode model and the two-
mode model plus the correction term, in Fig. 8. It
can be observed that the approximation technique sug-
gested in this paper is a much better option than simply
truncating the model as is clear from Figs. 6 and 8.
Moreover, a direct consequence of this reduced error is
that the in-bandwidth zeros of the corrected model are
considerably closer to the real in-bandwidth zeros of the
system.
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