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Abstract

This paper is concerned with the design of robust state feedback controllers for a class of un-
certain time-delay systems. The uncertainty is assumed to satisfy a certain integral quadratic
constraint. The controller proposed is a minimax optimal controller in the sense that it minimizes
the maximum value of a corresponding linear quadratic cost function over all admissible uncertain-
ties. The controller leads to an absolutely stable closed loop uncertain system and is constructed

by solving a finite dimensional parameter dependent algebraic Riccati equation.

Key Words: Time-delay systems, uncertain systems, absolute stability, robust performance, Riccati

equations.

1 INTRODUCTION

Delays often occur in the transmission of material or information between different parts of a system.
Communication systems, transmission systems, chemical processing systems, metallurgical processing
systems, environmental systems and power systems are examples of time-delay systems. Considerable
research has been done on various aspects of time-delay systems during past thirty years; e.g., see
(Malek-Zavarei and Jamshidi 1987) and references therein.In this paper, we extend the linear quadratic
regulator to the case in which the underlying system contains time-delays and is uncertain with

structured uncertainty and time delays.
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The linear quadratic optimal control approach to the design of state feedback control laws for time-
delay systems has been subject of intensive research over past twenty years (see for example (Malek-
Zavarei and Jamshidi 1987, Alekal et al. 1971, Delfour et al. 1975, Ichikawa 1982, Lee 1980, Uchida et
al. 1988) and references therein). An advantage of the linear quadratic optimal state feedback control
approach is that the closed loop system has desirable sensitivity and robustness properties. Indeed,
in (Lee and Levy 1982) and (Uchida and Shimemura 1986) it is shown that such optimal regulators
satisfy a circle condition similar to the classical LQ controllers; e.g., see Section 5.4 of (Anderson and
Moore 1990). That is, they guarantee classical measures of robustness, gain margin and phase margin.
However, more complex forms of uncertainty have not yet been addressed in the literature concerning
the LQ optimal controller design for uncertain time-delay systems. Furthermore, a serious drawback
of the LQ optimal control design method for time-delay systems is that it requires solutions to infinite
dimensional Riccati equations.

The problem of designing robust controllers to stabilize uncertain systems without time-delays has
been subject of much research; e.g., see (Dorato et al. 1993) and references therein. There are many
different classes of uncertainty considered in the robust control literature and for each particular
class, several approaches have been proposed. An important class of such systems is the so called
norm bounded uncertain systems. A widely accepted approach to designing stabilizing controllers
for such systems is the quadratic stabilizability approach (Barmish 1983). This involves finding a
fixed quadratic Lyapunov function that guarantees asymptotic stability of the uncertain system for
all admissible values of the uncertainty. A Riccati equation approach to the quadratic stabilization of
norm bounded uncertain systems is discussed in (Petersen 1987). Another important class of uncertain
systems is the class of systems which satisfy a certain integral quadratic constraint. These systems are
subject of currently ongoing research (Savkin and Petersen 1994¢, Savkin and Petersen 1995, Savkin
and Petersen 1994a, Megretsky 1994, Megretsky and Rantzer 1995). This uncertainty description
leads to a very rich class of uncertainties allowing for nonlinear, time-varying, dynamic uncertainty.
Indeed, the norm bounded uncertainty discussed above also fits into the integral quadratic constraint
framework.

In (Petersen and McFarlane 1994), the linear quadratic regulator is extended to the case of norm-
bounded uncertain systems. The controller is constructed by solving a certain game type Riccati
equation. The robust controller of (Petersen and McFarlane 1994) guarantees robust stability as well
as a level of robust performance measured with a linear quadratic cost function. The problem of
designing a robust minimax optimal controller for an uncertain system with structured uncertainty
satisfying an integral quadratic constraint is considered in (Savkin and Petersen 1995). The robust
controller of (Savkin and Petersen 1995) is obtained by solving a parameter dependent Riccati equation.

The problem of designing robust controllers for uncertain time-delay systems has been subject of
some recent research in (Moheimani and Petersen 1995, Trinh and Aldeen 1994, Shen et al. 1991).
A natural approach to tackle such problems is to extend techniques proposed in the robust control

literature to uncertain time-delay systems. The problem of designing guaranteed cost state feedback



controllers for a class of norm bounded uncertain systems is considered in (Moheimani and Petersen
1995). This is an extension of the problem considered in (Petersen and McFarlane 1994) to the case of
uncertain time-delay systems with a state time-delay. The controller stabilizes the uncertain system
and guarantees an upper bound on a LQ cost function. The solution of the problem is given in terms
of a finite dimensional parameter dependent Riccati equation. The upper bound on the LQ bound
can then be minimized by searching over the set of parameters for which the corresponding Riccati
equation has a positive definite stabilizing solution.

In this paper we extend the linear quadratic regulator to the case of uncertain time-delay systems
with structured uncertainty and delays. The class of systems considered here is richer than that of
(Moheimani and Petersen 1995) since we allow for structured uncertainty and time delays. Also,
the uncertainty is assumed to satisfy a certain Integral Quadratic Constraint. This is a rich class
of uncertain systems allowing for nonlinear, dynamical uncertainty; e.g., see (Savkin and Petersen
1995, Savkin and Petersen 1994¢). Hence, the class of uncertain time-delay systems considered in
this paper is much richer than those considered in (Moheimani and Petersen 1995, Trinh and Aldeen
1994). Indeed, we will show that the norm bounded uncertain time-delay systems can be considered
as a special case of the systems considered in this paper. Moreover, it is straightforward to verify that
the results of (Moheimani and Petersen 1995) can be obtained as special cases of the results presented
here.

Our solution to this problem involves a finite dimensional parameter dependent algebraic Riccati
equation of the game type. The number of parameters is equal to the number of uncertainty and
time-delay terms. Furthermore, as in (Savkin and Petersen 1995) we show that the controller is a
minimax optimal controller with respect to our Integral Quadratic Constraint uncertainty class. That
is, it minimizes the maximum (over all admissible uncertainties) value of the cost function. This is
expected since the problem considered in this paper is an extension of (Savkin and Petersen 1995) to
the case of Integral Quadratic Constraint uncertainties which allows for time-delays. The remainder
of the paper continues as follows. In Section 2, we define the class of uncertain time-delay systems
under consideration. We also present our notion of absolute stability for such systems. The class of
state feedback guaranteed cost controllers is also presented in this section. These are state feedback
controllers which guarantee an upper bound on the value of a cost function corresponding to the
closed loop uncertain time-delay system. Our main results are presented in Section 3 of the paper.
We show that the guaranteed cost controller can be constructed by solving a parameter dependent
Riccati equation. This controller guarantees absolute stability of the closed loop uncertain time-delay
system. We also show that the minimax optimal controller can be determined by optimizing over the
parameters entering the Riccati equation. Finally, in section 4 we present an example to illustrate

how the results of this paper can be used.



2 DEFINITIONS

Consider the uncertain linear system defined by state equations

k l
o(t) = Az(t)+ Bu(t) + Z Cpép(t) + Z Dygnq(2)
p=1 q=1

z1(t) = Eyz(t) + Fiu(t);

z(t) = Egz(t) + Feu(t);
wl(k) = Glx(t)+H1u(t);

wl(k) = Glx(t)—l—Hlu(t) (2.1)

where z(t) € R" is the state, u(t) € R™ is the control input, z;(t) € RM ... z(t) € R are
the uncertainty outputs, wi(t) € RI',... ,wi(t) € RI are the delay uncertainty outputs, & (t) €
R™,... &(t) € R™ are the uncertainty inputs and ni(t) € R, ... m(t) € R are the delay un-
certainty inputs. Also, we assume that C, # 0 and D, # O for allp = 1,... ,kand ¢ = 1,... ,[.
This differential equation, describes the dynamics of the system for ¢ > 0. Moreover, we assume that
z(t) = 1(¢) for t € [—7,0], ¥(-) € La[—7,0] for a given 7 > 0 and u(t) = 0 for ¢ < 0.

Associated with this system is the linear quadratic cost function
o
J:/ [z(t)'Qz(t) + u(t)' Ru(t)] dt (2.2)
0

where @ = Q' > 0 and R = R’ > 0 are given weighting matrices.

The uncertainty in the above system is described by equations of the form

&) = @i(t,z()[5,ul)p)

&t) = @x(t,z()[o,u(-)l6)

m(t) = Ti(ta()|L,,,ul))
m(t) = Wit z()|,,u-)h) (2.3)
where 7, < 7 for all ¢ = 1,...,l. The uncertainty described by the above equation is required to

satisfy a certain Integral Quadratic Constraint, described below.

Definition 2.1 (Integral Quadratic Constraint) Let My > 0,... , M > 0 and Ny > 0,... ,N; > 0

be given. Then an uncertainty of the form (2.3) is an admissible uncertainty for the system (2.1) if



for any locally square integrable control input u(-) and any corresponding solution to equations (2.1),

(2.3) with an interval of existence (0,¢*), there exists a sequence {¢;}?°; such that ¢; — t*, t; > 0 and

t;
/0 & (6)|2d
t; t; 0
/ In(®)2dt < £(0) Nya(0) + / g (1))t + / g (1)t (2.4)
0 0

—Tq

IN

t;
£(0) My (0) + /0 PO

for all 4 and p = 1,2,... ,k and ¢ = 1,2,... ,l. Here || - || denotes the standard Euclidean norm.
Also, note that t* and ¢; may be equal to infinity. Note that the form of the Integral Quadratic
Constraint on the time-delay uncertainty inputs allows the corresponding uncertain mappings W;(-) to
include time-delays. Such an uncertain system is shown in the Figure 5.1. Notice that these Integral

Quadratic Constraints pose energy constraints on each uncertainty block.

The class of uncertain systems defined by (2.1) and (2.4) is a rich uncertainty class allowing for the
uncertainty inputs &,(¢) and 74(¢) to depend dynamically on z(t) and u(t). Of special interest is the

class of time-delay norm bounded uncertain systems described by

k !
B(t) = |A+Y Colp(0)E,| o(t) + > DyGan(t — 7g)
p=1 g=1
k !
+ B+ Gl (O, | ult) + D DyHyult = 70); A0 <1 (25)
p=1 q=1
where ||A,(t)|| are the uncertainty matrices and || - || denotes the standard induced matrix norm. To

verify that such uncertainty is admissible for the uncertain system (2.1), (2.4), let &,(t) = Ap(t)2p (%)
and n,(t) = wy(t — 74) where [[A,(¢)|] <1 for all ¢ > 0. Then the uncertainty inputs &,(-) and n,(-)
satisfy condition (2.4) with any ¢; > 7 and with any M, > 0 and N, > 0.

Furthermore, we can show that the uncertain system described by (2.1) and (2.4) allows for the
norm bounded uncertainty to enter the time delay terms. Indeed, if we let &,(t) = A,(t)2,(t) and
ng(t) = Ay(t)wy(t — 74) where ||A,(t)]| < I and ||A4(t)|| < I, then the uncertainty inputs &,(-) and
n¢(+) satisfy condition (2.4) with any ¢; > 7 and with any M, > 0 and N, > 0. Hence, the following

system can be considered as a special case of (2.1), (2.4)

k l
B(t) = |A+D CoAM)E, | 2(t) + D Dylg(t)Gez(t — 1)
qg=1

p=1
k l
+ | B+ Y Cplp(0)Fy | ult) + ) Dyg(t)Hyult —79); [18,()II < 1, [Aq(#)]] <(2.6)
p=1 g=1

The uncertain system (2.5) and (2.6) include as special cases, the uncertain time-delay systems con-
sidered in the papers (Moheimani and Petersen 1995, Trinh and Aldeen 1994).



The problem considered in this paper is to optimize the worst case of the linear quadratic cost
function (2.2) via a memoryless state feedback controller of the form u(t) = Kxz(t). When this
controller is applied to the uncertain system (2.1), (2.3), it results in a closed loop uncertain system
described by:

k !
i(t) = [A+ BK]z(t)+ Z Cpép(t) + Z Dygnq(t)
p=1 q=1

Zl(t) = [E1+F1K](I,‘(t);

2e(t) = [Ey + FpK]z(t);
wi(k) =[G+ HiK]z(t);

wi(k) =[G+ HK]z(t) (2.7)
w(t) = Ka(t) (2.8)

The uncertainties for this closed loop uncertain system will be described by equations of the form

() = @(t,z(-)])

&(t) = Pt z()[5)
wi(t) = Uit z()[-,,)

wi(t) = Tt,z()]",) (2.9)
where the integral quadratic constraint (2.4) is satisfied with the substitution u(t) = Kxz(t).

Definition 2.2 The controller u(t) = Kxz(t) is said to be a guaranteed cost controller for the uncertain
system (2.1), (2.3) with the cost function (2.2) and 9 (-) € Lo[—7,0] and initial condition z(0) = zg if

the following conditions hold:
(i) The matrix A + BK is a stability matrix.

(ii) There exists a constant ¢ > 0 so that, for all admissible uncertainties, the solution to the closed
loop uncertain system (2.7), (2.9) with z(¢) = 1 (t) for ¢t € [—7,0] and initial condition z(0) = x
is such that

[2(-),u(-), €00 &R ()i (), ()] € L2[0, 00]

and the corresponding value of the cost function (2.2) satisfies the bound J < c.



Note that in the above definition we are assuming that t* = oo.

Definition 2.3 The uncertain system (2.1), (2.3) with z(t) = ¢ (¢) for ¢ € [—7, 0] and initial condition

z(0) = x¢ is called guaranteed cost stabilizable if it admits a guaranteed cost controller u(t) = Kxz(t).

Definition 2.4 The closed loop uncertain system (2.7), (2.9) is said to be absolutely stable if there
exists constants & > 0 and § > 0 such that the following conditions hold:

(i) For any 9(-) € Lo][—7,0] and initial condition z(0) = 2y € R™ and any uncertainty inputs
&p(+) € L£2]0,00) and n4(-) € L2[0,00), the system (2.7) has a solution z(-) € L2[0, 00).

(ii) Given any admissible uncertainties for the uncertain system (2.7), (2.9), then all corresponding
solutions to equations (2.7), (2.9) satisfy [z(-),&1(-),... ,&k(-),m(*), ... ,m(-)] € L2]0,00) (hence,

t* = 00) and

k l 0
=I5+ D 1O+ DG < allzol® + 8 [ v (®)]*dt.
p=1 q=1 -7

3 ROBUST CONTROLLER SYNTHESIS

In this section, we propose a procedure to design a guaranteed cost controller for the uncertain system
(2.1), (2.3). The controller minimizes the maximum value of cost function (2.2). The controller is

constructed by solving a parameter dependent algebraic Riccati equation of the form

(A- BE'G'L)P+ P(A-BE 'G'L)

+P(CC' —BE'B"YP+ L'(I -GE'G")L =0 (3.1)
where
_ Q% - R
0 R3
\/EEl \/IJ'_IFI
L := : ; G= : . E:=G'G;

Vi By VHrFy
V1 Gy Vo Hy

| VoG | | VoH |

o 1 1 1 1

We consider a set I' defined as follows

o (1 - pg 01 ... Ok ERkH:ul >0,...,0>0,60>0,...,0,>0
' & The Riccati equation (3.1) has a solution P > 0. '



If T is non-empty and P > 0 is the minimal positive-definite solution to Riccati equation (3.1), then

the corresponding guaranteed cost controller is given by
u(t) = —E YB'P + G'L)x(t). (3.3)

In the sequel we will use a certain S-procedure Theorem (see also (Megretsky and Treil 1993, Yakubovich
1992, Savkin and Petersen 1995)). For the sake of completeness we state this theorem here. We con-

sider a linear system of the form:
() = @n(t) + Ap(t); 1(0) = no
o(t) = Tin(t) (3.4)

where @ is a stability matrix. Corresponding to this system we consider a set M defined by:

M = {)\() = [ Z(()) ] :{o(-),u(-)} are related by (3.4), u(-) € L2[0,00) and n(0) = ng} . (3.5)

Since the system (3.4) is stable, and u(-) € L£2]0,00), we can conclude that o(-) € L2[0, 00). Therefore,
M C L5]0,00). Also, we consider the following set of functionals mapping M to R;

o0
FaO() = 0t [ A0 N
000
RO = et [N
0
) o0
FOO) = 9+ [ M0N0 (3.6)
0
where Ny, Ny, ..., N, are given matrices and g, 71, ..., 7r are given constants. For this set of func-

tionals, a corresponding set R C M is defined as follows:
R = {A() E M : F1(A()) 20, F2(A() > 0, ..., Fr(A()) > 0}

The following lemma is referred to as the S-procedure Theorem (see (Megretsky and Treil 1993),(Yakubovich
1992))

Lemma 3.1 Consider a system of the form (3.4), a set M of the form (3.5) and a set of functionals
of the form (3.6). Suppose that these functionals have the following properties:

(i) Fo(A(-)) <0 for all A(-) € R;
(1) There exists a A(-) € M such that Fy(A(-)) > 0, Fa(A(+)) > 0, ..., Fr(A(-)) > 0.
Then there will exist constants By > 0, By >0, ..., Br > 0 such that
FoA() + Y BiFi(A()) <0
i=1

for all \(+) € M.



The following theorem gives a characterization of guaranteed cost controllers in terms of the parameter
dependent Riccati equation (3.1). It also determines the corresponding upper bound on the cost

function (2.2) with this controller.

Theorem 3.1 Consider the uncertain delay system (2.1), (2.4) with cost function (2.2). Then for
any {f41,y.-. , ks 01,...,01} €T, the corresponding controller (3.3) is a guaranteed cost controller for
this uncertain delay system with any ¥(-) € Lo[—7,0] and initial condition o € R™. Furthermore, the

corresponding value of the cost function (2.2) satisfies the bound
k ! ! 0
T<ab (P Y My + 3" 8, Nobao + 30, [ H0/GLGwlods (3.7)
p=1 q=1 g=1 7 Ta

for all admissible uncertainties. Moreover, the closed loop uncertain delay system (2.1), (2.4), (3.3)
is absolutely stable.

Conversely, with Q the set of admissible uncertainties, if the uncertain system (2.1), (2.4) with
the cost function (2.2) and ¢(-) € Lo][—7,0] and initial condition z(0) = o has a guaranteed cost

controller such that

sup J < cq, (3.8)
[€()m(-)]e
then there exist [u,0] € ' such that
k ! ! 0
op{P+ > My + Y 5gNg}zo+ > 6 [ () GoGap(t)dt < cy. (3.9)
Pil q:1 q:l —Tq

Proof: Let [y ... pg 61 ... §] € [ be given and let P > 0 be the corresponding positive definite
solution of the Riccati equation (3.1). Also, assume that the initial condition of the uncertain system
(2.1), (2.3) is defined by z(t) = 1(t) € Lo[—7,0] and z(0) = 2o € R". If controller (3.3) is applied to
the uncertain system (2.1), (2.3) the closed loop system will be defined by (2.7) with K = —E~1(B'P+

G'L). Now, for a given initial condition, define a functional F as follows

l

k
F (2()u(),2(),w(),€0),n0)) = T+ Y mp(llzpOE = 16O13) + Y Salwg (I = g (113).
p=1

q=1
(3.10)

Also, let us consider a differential game where the underlying system is described by the state equations
z(t) = Ax(t) + Bu(t) + Cv(t); x(0) =xg
C(t) = Lx(t) + Gu(t) (3.11)
and the cost function is given by
o0
0

L (u(-),v()) =/ (lcOI” = Il @)1I*)dt (3.12)



where C, L and G are defined as in (3.2) and v(-) = [/m&i (1) - oe&e(:) oo Vom () ... Vom()'].
In this game, u(t) is the minimizing player input, v(t) is the maximizing player input and ((t) is the
output of the system defined by (3.11). It is easy to verify that the system (3.11) can be written as
(2.1) and the functional £ is equivalent to the functional F defined in (3.10).

Theorem 4.8 of (Basar and Bernhard 1991) implies that

sup L (u(),v(-)) = zhPao
v(-)€L2[0,00)
where P is the minimal positive definite solution of the Riccati equation (3.1). Furthermore, the

controller which achieves this supremum is defined as in (3.3). Therefore,

sup F(z(),u(), 2(),w(),6(-),n() = zpPxo (3.13)
[€()m(-)]€L2[0,00)
Moreover, it follows from Theorem 4.8 and Section 4.5.1 of (Basar and Bernhard 1991) that the matrix
(A—BE'[B'P+G'L)) is stable. That is, the system (2.7) with K defined as in (3.3) is asymptotically
stable.

Now, we prove that for the closed loop system described by equations (2.7) and (3.3), t* = oo.
Indeed, for an admissible uncertainty let sequence {t; }?L be as defined in Definition 2.1 and consider
a corresponding sequence N () = [27 (), u? (-), 27 (-), w? (-), &7 (-), 7’ (-)] of vector functions defined by the
initial condition 27(0) = x¢ and inputs £7(-) and 7/(-) defined as:

0 i 0 ..
i) = €°(t) for 0 <t <ty ) = n’(t) for 0 <t <tj;
0 for t > t; 0 for t > t;

It is clear that A (t) = A%(¢) for 0 < ¢ < t;. Also, since the matrix (A — BE }[B'P + G'L)) is stable,
we conclude that M (-) € Ly[0,00). Therefore, (3.13) implies that

k
P 2 J(@(),u () + D m(lOlE = 16 O1)
p=1
l
+ 3 0l O3 = I (113). (3.14)

qg=1
This, combined with inequality (2.4) implies that

k l l 0
J(@ (), 07 () < ap{P+ > ppMy+ > 6,Ngbwo+ Y 5q/ z(t) GG ym(t)dt (3.15)
p=1 q=1 q=1

—Tq

for all j. Now as in Definition 2.1 we have ¢; — t*. However, since @ > 0, (3.15) implies that t* — oo.
Therefore, we conclude that \°(-) € £3]0,00). Also, (3.15) implies that (3.7) is satisfied.

To complete the proof of the first part of the theorem we have to establish absolute stability of the
closed loop uncertain system (2.7), (2.9) as defined by Definition 2.4. We have already proved that

10



the matrix (A — BE ![B'P + G'L)) is stable. This establishes the condition (i) of definition (2.4). To
prove the condition (ii), note that we have already proved that [z(-),&1(-),... ,&(:),m(-),-.. ,m(-)] €
L£5[0,00]. Also, inequality (3.7) implies that there exist constants c;,co > 0 such that ||z(-)||3 <
c1llzol? + c2 f ll(+)||?dt for all the solutions to the closed loop uncertain system. Furthermore, the
constraint (2.4) imply that there exist constants cs, cs,c5,c6,c7 > 0 such that [|€,(4)[13 < esllz()]|3 +

callzo|? and |Ing()I3 < esllz()13 + csllzoll® + C7f l4(-)||?dt for all the solutions of the closed loop
uncertain system and allp=1,... ,kand ¢g=1,...,l. Hence,

k l 0
()1 + D UEON5 + D InOI5 < [(1+ kez + les)er + kea + leg]zoll® + (c2 + lC?)/ Il ()17 dt.

This completes the proof of the first part of the theorem.
To prove the second part of the theorem, let ¢(-) € Lo[—7,0] be given such that xz(0) = zy # 0.

Let us define functionals F,... ,F; and G,... ,G; as follows
Fo(AC) = O3 = €03 +$6](\)/—[p$0 > 0; (3.16)
Ge(AC) = Nwg()II3 = lInC) 113 +/ lwg ()| dt + 2 Ngzo > 0 (3.17)
1
where

Note that (3.8) implies that there exist a constant € > 0 such that (1 +€)J(z(-),u(-)) < ¢1 — €. Now,

if we define a functional Fy as
Fo(A()) =1 +e)J(z(-),u() —a +e<0, (3.18)

we can apply the S-procedure Theorem to the functionals (3.16), (3.17) and (3.18). The S-procedure
implies that there exist constants g1 > 0,... ,ur > 0 and §; > 0,... ,d; > 0 such that

k [
A+ Y mFp(AO) + Y 84G4(A()) < 0. (3.19)
p=1 q=1

Let us define the functional F, as
Fe(A() = eJ(z(-),u(-) + F(A()) (3.20)
with F defined as in (3.10). With this definition, (3.19) implies that
k ! ! 0
FeA\() <e1 —e—ap{P + Z pip M +- Z 0qNg} w0 — Z 5&1/ @b(t),Gqu@/)(t)dt- (3.21)
p=1 g=1 =1 ~7Ta

Let A(+) = [z(),u(-), 2(-),w(-),&(-),n(-)] € L2]0,00) be the solution of (2.7) corresponding to z(0) = 0.
Also, let \o(-) = [zo(-),uo(+),20(-),wp(+),0,0] be the solution of (2.7) corresponding to the initial

11



condition z(0) = z and £(-) = 0 and n(-) = 0. Since the system (2.7) is linear, a\ + Ao is also a
solution of (2.7) with 2:(0) = x for all ¢ € R. Furthermore, since F, is a quadratic functional, we can

write
Folar+ Xo) = a>Fo(N\) + af (A, o) + Fe(No)

where f(-,-) is a corresponding bilinear form. Now, if we assume that F.(\) > 0, it follows that
limg 00 Fe(aX + Ag) — 0o which contradicts (3.21). Therefore, F(A(-)) < 0 for all solutions of (2.7)
corresponding to z(0) = 0.

Next, we prove that yu,,d¢g > 0 forallp =1,... ,k and ¢ = 1,...,l. Note that F.(A(-)) can be

written as

] (1 +e)[z(t) Qu(t) + u(t) Ru(t)]
Fe(A(+)) = dt
A /o { + et (1 O = 16O + Sy dgllwg I = g ()1IP) }
for all [z(-),u(-),z(-),w(-),&(-),n(-)] € L2]0,00) connected by (2.7) with z(0) = 0. Let us assume that
pi =0, &(-) # 0 and &(-) = 0 for p # i for some i. Also, let 0;(-) = 0, 7;(-) # 0 and 74(-) = 0
for ¢ # j for some j. For such an input, (3.22) implies that F.(A(-)) = 0 since we have already

(3.22)

proved that F.(A(-)) < 0 for any solution of the system (2.7) with zero initial condition. This along
with the assumption that @ > 0 and R > 0, imply that z(-) = 0 and u(-) = 0. However, since
C; # 0 and D; # 0 we can choose &(-) and 7;(-) such that C;&;(-) # 0 and Djn;(-) # 0. This is in
contradiction with equation (2.7). Hence, the logical conclusion is that pp,d, > 0 forallp=1,... ,k
andg=1,...,1.

Now, consider the functional F.(A(-)) defined above. We have already shown that F.(A(-)) <0 for
any A\(-) = [z(-),u("), z(-),w(:),&(-),n(-)] € L2]0,00) connected by (2.7) with initial condition z(0) = 0.
Therefore, (3.20) implies that F(A(-)) < —eJ. Now consider the system (3.11) with z(0) = 0. Since
Lip, 0 > 0, this system is well-defined. If we let v(-) be the disturbance input and ¢(-) be the controlled
output, it follows that F as defined by (3.10) can be rewritten as

Ful),v(-) = ICOIE = lvO)3-
Since we have established that F < 0, we may conclude that

2
T — sup I¢(: )||g
2(0)=0,u(-)eL2[0,00) 1V ()3

<1 (3.23)

This means that the controller (3.3) solves a standard # o, control problem defined by the system (3.11)
with initial condition z(0) = 0 and the cost function J defined by (3.23). Hence, using a standard
result from H, control theory, it follows that the Riccati equation (3.1) has a positive definite solution
P >0, e.g., see Theorem 4.11 of (Basar and Bernhard 1991).

To conclude, consider the differential game defined by system (3.11) and cost function (3.12). Also,
assume that z(0) = zp € R". We have already proved that the Riccati equation (3.1) has a positive
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definite solution P > 0. Therefore, Theorem 4.8 and Section 4.5.1 of (Basar and Bernhard 1991)
imply that sup,(.)c,0,00) £ > 2o P7o. Hence,

sup F(u(-),v(-) > zuPzo.
[£():n(-)]€L2[0,00)

This last inequality along with (3.21) imply that

k ! ! 0
€L —€— xﬁ{z ppMp + Z 0qNg o — Z O @/)(t),G;GqT/)(t)dt > sup Fe(A())
p=1 q=1 q=1 —Tq [6(')777(')}6‘62[0700)
> s FO()
[£(-),m(-)]€L2[0,00)
> $6P$0
Therefore,

k ! ! 0
eo{P + > _ M, + Y 54Ng}zo + > 4, / P(t) GLGap(t)dt < ¢ —€
Pil q:1 q:l —Tq

which implies that the inequality (3.9) is true. This completes the proof of the second part of the
theorem. OO

The next theorem is the main result of this paper and shows that Theorem 3.1 can be used to
construct a controller which approaches the minimax optimum. The proof of the theorem follows

directly from the statements of Theorem 3.1.

Theorem 3.2 Consider the uncertain delay system (2.1), (2.3) with cost function (2.2), and assume
that Cl 75 0, e ,Ck 7'5 0 and D1 7'5 0, ...,Dl 75 0. Then:

(1) Given a1(-) € L2[0,00) with a non-zero initial condition z(0) € R", the uncertain delay system
(2.1), (2.3) will be guaranteed cost stabilizable with initial condition x(0) = xo if and only if the

set I' is not empty.

(11) Suppose the set T is not empty and let 2 be the set of all admissible uncertainties for the uncertain
system (2.1), (2.3) as defined in definition 2.1. Also, for any initial condition zo # 0, let ©
denote the set of all guaranteed cost controllers of the form (3.3) for the uncertain system with

this initial condition. Then

k l l 0
inf sup  J= inf Sz{P+ > upMy+» 6Ngtzo+ )y 6 / P(t)'GLG g (t)dt
u(.)ee[‘g(.),n(.)]eg [6,u]er 0 pzl PP ; e ; a4 —7 a4

(3.24)

Remark: Note that our state feedback minimax optimal controller depends on the actual values of
time-delay terms 7, ... ,7; since the optimal parameters pu1, ... ,ur and dq,... ,d; depend on the time
delays. Therefore, the minimax optimal controller proposed in this paper is indeed a delay dependent
controller. However, if the controller is designed to guarantee only the robust stability of the system,

and not the minimax optimality, then such a controller would not be delay dependent.

13



Remark: For the case of a single uncertain parameter and time-delay in the state, the Riccati
equation (3.1) reduces to the Riccati equation of (Moheimani and Petersen 1995). Also, the controller
(3.3) is identical to the controller proposed in (Moheimani and Petersen 1995). Furthermore, if we let
M, — 0 and N, — 0 for all p and ¢, then the same cost bound is obtained as well.

Remark: Note that the controller designed using the above procedure is nonconservative if the
uncertainties are precisely modeled by the integral quadratic constraints (2.3). However, if the time
delays are known and modelled using the IQC’s, then the controller will no longer be minimax optimal.
But, it will be a guaranteed cost controller which minimizes a bound on the LQ cost function. This

will cause a certain amount of conservativeness since it may not be clear how tight that bound is.

Remark: The minimax optimal controller of this paper is a state feedback controller. The problem of
designing a minimax output feedback controller within this framework is more complicated, and hence,
delegated to future research. However, it is possible to modify the IQC descriptions of uncertainty
in (Savkin and Petersen 1994¢) and (Savkin and Petersen 1994b) to allow for time delay terms and
derive the corresponding output feedback controllers.

As stated in Theorem 3.2, existence of a minimax optimal controller is guaranteed if the set I" is
nonempty. The following lemma gives necessary and sufficient conditions for existence of a nonempty

set I' in terms of feasibility of a linear matrix inequality.

Lemma 3.2 The following statements are equivalent:
(i) The set T is nonempty.
(ii) The following Linear Matriz Inequality is feasible:

+Xk_, Lop0y

=14,
l 1 1
+Xq=135,;DPqDq
(E1Z + F1Y)

r ( AZ 4+ ZA' + BY +Y'B’

) (E1Z + F1Y)’

_ 17
K1

(ExZ + FY)'

(G1Z + H 1Y)

(G1Z + HiY)' Z Y’

(ExZ + FY)
(G1Z + H1Y) .

(G1Z + HY)
A —Q !
Y _Rr-1 |

(3.25)

Proof: Let K = —E~'(B'P +G'L). Then it is straightforward, but tedious, to show that the Riccati

equation (3.1) is equivalent to
(A+ BK)'P+ P(A+ BK) + PCC'P+ (L+GK)'(L+GK)=0.

It follows from the Strict Bounded Real Lemma (Theorem 2.1 of (Petersen et al. 1991)) that the above

Riccati equation has a solution if and only if there exists a P > 0 such that

(A+ BK) P+ P(A+ BK) 4+ PCC'P + (L + GK)' (L + GK) < 0. (3.26)
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Using (3.2) and the change of variable K = YP~! = Y Z, it is straightforward to show that (3.25)

follows from (3.26) using the standard Schur complement.

4 ILLUSTRATIVE EXAMPLE

In this section we present an example to illustrate our approach to minimax stabilization of uncertain
time-delay systems. We consider an uncertain time-delay system described by the following delay

differential equations:
t) = [3.4—0.5A(t)]z1(t) + [-1.1 — 0.5A(¢)]z2(t) — u(t);
t) = [0.5+ L1A(t)]z1(t) + 0.521(t — 1) + [—2 + A(t)]x2(t) + 0.25z5(t — 1) + 2u(?)

:El(
272(
where A(t) is a scalar uncertain parameter satisfying the bound |A(¢)| < 1. We also assume that

p(t) = [1.2 0] for t € [—1,0]. Corresponding to this system we consider the linear quadratic cost

function
o0
J= / 1 ()% + 22(8)? + u(t))dt.
0
This system and the correspondlng LQ cost function are of the form (2.1), (2 3), (2.2) with
3.4 —-1.1 -1
A = ; B= ;
0.5 -2 2
[0 0.1 0 0.1 0
D, = ; My = ; N = ;
0.5 0 0.1 0 0.1
1o 11 1
< 0 1 ] ' [ 1 ] ! [ 0.5

The matrices M; and N; can be regarded as bounding the initial conditions on the uncertainty
dynamics. The reason for choosing them as above is to reflect the assumption that the initial conditions
will be small in this example.

We now apply the results of the previous section to this uncertain system and cost function. This
involves solving the Riccati equation (3.1) for a series of the parameters p and §. A plot of the cost
J versus i and § is shown in Figure 5.2. From this figure, we can see that the optimal value of the
parameters y and § is 4 = 0.95 and 6 = 0.16. With this values of ;4 and § we find the positive definite

solution to the Riccati equation (3.1);

8.1614 —0.3419
—0.3419  0.4694

The following minimax optimal controller is found using equation (3.3)
u(t) = [8.8451 — 1.2807]x(t).
To verify the robust stability of this control system, Figure 5.3 shows the evolution of the closed loop

system states x1(t) and z2(t) for values of uncertainty ranging between -1 and 1.
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5 Conclusion

In this paper we looked at the problem of designing robust state feedback controllers for a class of
uncertain time-delay systems where the uncertainty is described by an Integral Quadratic Contraint.
It was explained how a minimax optimal controller could be designed for such a system by solving a
parameter dependent Riccati equation. Moreover, it was explained how the existance of a minimax

optimal controller can be checked by solving a particular Linear Matrix Inequality.
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Figure 5.1: Block diagram of an uncertain system with Integral Quadratic Constraint uncertainties.

Figure 5.2: x{{P + uMy + 6Ny }zo + 0 E () GG (t)dt versus the parameters p and 4.
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Figure 5.3: States of the system versus time for uncertainty —1 < A < 1.
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