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Spatial Resonant Control of Flexible
Structures—Application to a Piezoelectric
Laminate Beam

Dunant Halim and S. O. Reza Moheimakiember, IEEE

Abstract—This paper introduces a class of resonant controllers be necessary to suppress structural vibration due to every single
that can be used to minimize structural vibration using collocated mode. This is an interesting property which results in controllers
piezoelectric actuator-sensor pairs. The proposed controller of dimensions, not more than necessary.

increases the damping of the structure so as to minimize a chosen . . . . .
number of resonant responses. The controller can be tuned to a The er’posed cc.)n.troller IS gpplled to a piezoelectric |am'nat?
chosen number of modes. This results in controllers of minimal beam. Piezoelectricity was discovered in 1880 by French sci-
dimension. The controller structure is chosen such that closed-loop entists Pierre and Paul-Jacques Curie. They observed that when
stability is guaranteed. Moreover, the controller can be designed they compressed certain types of crystals including quartz, tour-
such that the spatialH~ norm of the system is minimized. This will maline, and Rochelle salt, along certain axes, a voltage was pro-
guarantee average reduction of vibration throughout the entire ’ ' ' .

structure. Experimental validation on a simply supported beam is dgced on the surface of the crystal. In the following year, they
presented showing the effectiveness of the proposed controller.  discovered the converse effect, namely that such crystals elon-

) . , . gated upon the application of an electric current. The piezoelec-
Index Terms—Flexible structures, piezoelectric actuator, piezo- ;. . .
electric sensor, smart structures, spatiatt, norm, spatial resonant i€ €ffectin natural crystals is rather weak. Therefore, there are
control, vibrations. limitations in employing them as actuators and sensors for vi-
bration control purposes. Recently, there has been remarkable
progress in this field of materials science, whioter-alia has
|. INTRODUCTION resulted in availability of inexpensive piezoelectric materials.
XAMPLES of flexible structures can be found in manylrhese materials are capable of transforming mechanical energy
systems including aircraft, bridges, and buildings. In rento electrical energy and vice versa in an efficient way.
ality, however, all structures can be regarded as flexible sinceThere are a number of piezoelectric materials that are
they experience structural deformation under some loading, @igrrently being used. These include poly-vinylidene flouride
matter how small. Structures experience vibrations, whose §PVDF), which is a semicrystalline polymer film and lead
fects are more significant for less rigid structures. In many siirconate titanate (PZT), which is a piezoelectric ceramic
uations, it is important to be able to minimize these structuralaterial. These materials strain when exposed to a voltage
vibrations, as they may affect the stability and performance ahd, conversely, produce a voltage when strained. This is
the structures. due to the permanent dipole nature of these materials. For a
It is well known that it is possible to design controllers whicltletailed discussion of electromechanical properties of these
effectively minimize structural vibrations. It is known that thematerials the reader is referred to [2]-[4]. When used for
response of flexible structures are relatively large at, or clog@ration control purposes, piezoelectric patches are bonded
to, their resonant frequencies. Therefore, it is desirable to hdgethe surface or are manufactured into the flexible structure
controllers that minimize structural responses at those resonax@mbrane. These patches can then be used as actuators and
frequencies. The controller proposed in this paper is motivateeinsors. An interesting property of piezoelectric actuators and
by resonant controllers originally developed in [1]. We introsensors is that they are spatially distributed over the surface
duce a more general class of controllers that allows for contimhich is being sensed or controlled. This property distinguishes
of multivariable resonant systems and includes the work of [tjem from discrete actuators and sensors that are often used
as a special case. The controller is chosen to minimize vibia-control of flexible structures. The use of these piezoelectric
tion by increasing the system damping properties for individuattuators and sensors have shown promising applications in
modes. The advantage of this particular controller structureastive vibration control of flexible structures [5]-[10].
that, in many noise and vibration control problems, it may not An important issue in designing a controller for a flexible
structure is whether the developed closed-loop system will have
sufficient robustness to deal with uncertainties in the system
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in instabilities once implemented on the real systems. Th
problem is referred to as the spill-over effect [11], [12]. The K K . KT .
1 2
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controller that is proposed in this paper guarantees closed-lo"

stability in the presence of uncontrolled modes. Moreover, Vs1
B = eSS

A

maintains closed-loop stability even if the resonant frequenci |

of the system are changed. Q B év\fl Vié S| /ZV%T
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The controller is designed such that the spatialnorm of

the closed-loop system is minimized. The concept of spatial T + +T sensor

norm was introduced in [5], [13]. Minimizing the spatiad, i X w w actuator w—
. L . 7 1 2 1

norm of the system will guarantee vibration reduction over the

entire structure in an average sense. Flexible structures are gig-1 A simply supported beam with a number of collocated piezoelectric

tributed parameter systems. Therefore, vibration of each poinpisches.

dynamically related to the vibration of every other point over the

structure. If a controller is designed with a view to minimizing M—' X piezoelectric patch

structural vibration at a limited number of points, it could have % 7 ¢

negative effects on the vibration profile for the rest of the struc: 7 ~

ture. w = Lpy / T
This paper is organized as follows. Section Il describes thi, 7 | h

dynamics of flexible beam structures such as those with col i Lpx /
L

located piezoelectric actuator-sensor pairs. This section is of

tutorial nature and is included as a ready reference source fu Beam
researchers entering this field. Section Il briefly describes thg > A beam with a piezoelectric patch attached.

notion of spatial{> norm and its use as a performance measure

for flexible structures. Section IV presents a controller StruGyatial. as well as spectral properties of the system. The spa-

gure ‘lNh'Ch guarantees closed-loop Stab'““é‘ In Se,Ct'OE V. W& information embedded in these models can then be used to
evelop a spatidtl; norm optimization procedure using the Lagegion controllers which guarantee a certain level of damping
grange multiplier technique to optimize over the controller P35y the entire structure

rameters. Section VI discusses the implementation of our singIeCOnsider a homogeneous Euler—Bernoulli beam with dimen-
input—single output (SISO) resonant controllertoapiezoelectgﬁ)nS of L x W x h as in Fig. 2. The piezoelectric actuators
laminate beam with simply supported ends. Section VII presensy sensors have dimensionslgf, x Ly, x h,, whereh,, is
experimental validation of the SISO resonant controller applief thickness of each patch. We denote the beam transverse de-

to the piezoelectric laminate beam. The last section draws CORztion at pointz and at timer by z(x, ¢), assuming the beam
clusions. as a one-dimensional system only. The PDE which governs the

dynamics of the homogeneous beam is as follows [6], [14]:

Oz, t & x(z,t M, (z,t
In this section, we will develop a model for a piezolectric lam- EIM + pAy (1) = (1) (1)

. . . Ozt ot? dz?

inate beam with a number of collocated actuator-sensor pairs

using a modal analysis technique. This section has a tutorial Mderep, A, E', and I represent density, cross-sectional area,
ture. The material is available elsewhere in the literature. Howoung’s modulus of elasticity, and moment of inertia about the
ever, we believe that there is value summarizing it here al@utral axis of the beam, respectively. The moment acting on

Il. MODELS OFFLEXIBLE BEAM STRUCTURES

ready reference source for others. the beam is denoted hy/,,...
Initially, the relationship between the voltage applied to the
A. Dynamics of a Piezoelectric Laminate Beam piezoelectric patch and the moment generated by the patch

needs to be obtained. The approach presented below follows

Consider a flexible structure with a number of piezoelectriﬂ:]e procedures in [7] and [8] and is included for the sake of
actuator-sensor pairs attached to it as shown in Fig. 1. SuPpBﬁﬁnpleteness and clarity.

there ard collocated actuator-sensor pairs distributed along the\we consider theth piezoelectric actuator patch attached to

structure. Piezo_electric patches on one sid_e of the beam are Ypedyaam. The overall strain acting inside the actuator in the

as sensors, while patches on the other side serve as actuatr§jrection is a combination of the effect of the induced strain

\oltages that are applied to aTctuatlng patches are represerbtsg to bending., and the unconstrained straiy, The uncon-

by Va(t) = [Var (8), ..., Var (1] . . . strained strain is the strain produced by the piezoceramic patch
We assume that a model of the structure is obtained via %ﬂen the patch is free to expand or to contract [7], [8]. Ref-

modal analysis procedure. This procedure requires one to figd,ces [8] and [9] give an expression for the unconstrained

a solution to the partial differential equation (PDE) which desy4in (see Fig. 3) of the piezoelectric material due to the ap-
scribes the dynamics of the flexible structure. The partial di{)‘lied voltage

ferential equation can be solved independently for each mode
by using the orthogonality properties of its eigenfunctidi, _ [ da
Such models have the interesting property that they describe cr = hy,

) Vi 8). @)
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SUSOT where K = (kEds h3L,,/12h,) is a constant based on the

Beam
/\/ properties of the beam and the piezoceramic patches. The

forcing term in the PDE (1) can then be determined from the

— hp M, expression, using the property of Dirac’s delta function
[15],
_Neutral Axis ; ,,,,,,,,,,,,,,,,, h o0
A | se-opmd= e @
hp  wheres() is thenth derivative ofs and¢ is continuous af.
\ Having obtained the piezoelectric moment expression, one
bending strain needs to solve the PDE (1). The modal analysis technique is
] actuator. __actuator sed for this purpose. We consider a solution of the form
Z unconstrained strain
Fig. 3. Piezoelectric patches attached to a beam. z(x, t) _ Z Wi (-T)Qk (t) Q)
k=1

The piezoelectric charge constant is denotedhy while the

applied voltage to théth piezoelectric actuator is denoted by 1€r€:Wi(z) is determined from the eigenvalue problem, which
Vai(b). Is obtained by substituting (9) into (1) with no forcing function.

We use Hooke’s law to obtain an expression for stress in terms! 1€ €igenfunctiofi¥, (z) can be shown to have orthogonality

of strain properties
L
oy = Ee, 4 L 0
EI d*Wy(x) )
— ————W,(x)dz = w; by 11
whereo,,, ando,, are the actuator axial stress and the beam axial /0 pAy  dxt p() dz = Wibiy 11)

f;i)edsjljg (t)?aagtlir;glz?,tr:zsa?cetﬁg\tlsy and, is the Young's wherewy, Qescribes th(? natural freq'uency of the beam at mode
The strain distribution across the beam thickness is assunéea?dékp is Kronecker's d_elta fun_ctlon. . .
to be linear for pure bending casg, = «z, as shown in Fig. 3. set of u_ncoupled ordinary dlﬁerenngl equations (ODE.S)
The strain gradient: is determined from the moment equiIib-;?gpt;iiggtz%?da:gngltlr;e :nl?jED(igcb’Z gzll?f ftjlfcg;t:()p%g;zlrlg
rium equation about the beam’s neutral axis (8) as well as the solution in (9). If the contribution of forcing
L Lth, functions generated by allpiezoelectric actuators is included,
/ 20, dz + / 20ps dz = 0. (5) we obtain the following ODEs:

I3 k
2 2

= I
Here, we assume perfect bonding between the piezoelectriG; 1y 1 2¢, w6 () + w2au () = K UV (8 (12
patch and the beam. This amounts to having no shearing effec?gk( )+ 2k di(B) - wran(?) pAy ; uVai(®) (12)

in the patch-structure interface. We also assume that the neutral

axis of the structure coincides with that of the beam alone ahdnerek = 1,2,... andgx(?) is the generalized coordinate of

the sensor does not contribute to the structural properties. THIgdek. The subscript denotes théth actuator. It is assumed

is also a reasonable assumption if the patches are relatiégt all piezoelectric actuators and sensors that are used here

much thinner than the beam’s thickness. are made from a similar material. A proportional damping term
From (5) and after some manipulation, the expression for tRg.wx for each modé: has been added into the equation of

relationship between the unconstrained actuator straiand motion in (12). Furthenly; can be obtained from

the bending strain gradientis found to be

o L - dé(z — x1;) 3 dé(xz — x2;) -
«a = Kep (6) i = /(leWk( ) [ dwé/lai dx } de (13)
wherex = (12E,h,(hy + 1)) /(2ER® + Ep[(h +2h,)% — h®]). = [%k(am) - %’“(xu)} : (14)

To incorporate the placement of the patch on the beam’s sur- _ _ o
face in theX direction, the use of step functiol(-) is em-  Applying the Laplace transform to (12), assuming zero initial
ployed, whereH (z — ;) is zero forz < z1; and one for conditions, we obtain the multiple input—infinite output (MI10)
x > x1;. Here,z1; andz»; denote the location of thith piezo- transfer function from the applied actuator-voltaggs(s) =

electric patch’s ends along tté axis. Thus, the moment trans-[Va1(s), - -, V,1(s)]*, to the beam deflection(z, s) at loca-
ferred to the beam from the piezoelectric actudtfy, can be tionz
obtained from the first integral term in (5) using (6) 00 =
~ G(s,z)=PY — . (15)
Mys = KVoi(t)[H(x — 21;) — H(z — 22;)] ™ st 2wk g
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wherel;, = [¥y1,. .., V,;7]7. Here, U, is a function of the lo- plates with certain boundary conditions, similar transfer func-
cation of theith piezoelectric actuator-sensor pair and the eigetiens can be obtained.

function, Wy. Also, P is a constant that is dependent on the

properties of the structure and the piezoceramic patches, i.e., [ll. SPATIAL H; NORM

D = (K/pAy). We note that a similar methodology can be €M This section presents an overview of the concept of spatial

Egogsed to obtain models of plates with certain boundary CondﬁQ norm that will be used in the optimization procedure in Sec-
' tion V. Consider the transfer function of a flexible structure,

G(s, ), as in (15). This model describes the structural deflec-
) ) . tion at some point. TheH; norm of G(s, z) can be used as a

In'thls paper, piezoelectric patches are used as sensorqj%sure of performance at the painHowever, the, norm of
placing the actuators and the sensors at the same locag@ ;) cannot be used as a global performance measure since
on both sides of the beam (i.e., we collocate the actuatqf$s calculated based on the response at a specific location on
and sensors). We consider tfte piezoelectric sensor patch.ihe structure [5], [13]. To overcome this difficulty, the notion of
Suppose the actuators produce forcing moments that vibrateéﬁagtia”_[2 norm was introduced in [5] and [13].
beam. This vibration induces strain inside the beam elementype spatiafi; norm of the transfer functioi(s, z) is de-
This strain will then induce an electric charge inside thgeq [5], [13] as
piezoelectric sensor due to the piezoelectric effect. The electric

charge distributiory,(t), i.e., the charge per unit length, for a (G)2 = 1 /°° / {G(jw, 2)* Gljw, )} dedw  (20)
dimensional structure is, as described in [10], given by SR L A ’ ’

B. Piezoelectric Sensor

k2, where X is the set over whick is defined. For a beam¥ =
——ealyy (16) [0, L]. Here,tr{ F'} represents the trace of the matfix Taking

g3t . . . .
. ] ) ) advantage of the orthonormality of the eigenfunctions,, in
whereks, is the electromechanical coupling factor aadisthe  (10), it can be shown that

piezoelectric voltage constant in tAedirection. Using Hooke's

ap(t) =

law for the beam deflection in thE direction,x, the expression 2 .
for the strain in the sensor patch is obtained as (&2 = ; Gl (1)
du 8%z
pm e =y 22 17) Where
£ 83: 7p a.’L'Q ( ) \PT
. . y ~ o k
wherez, = —(h+h,/2) is the normal distance from the beam’s G(s) =P 35— ST (22)

neutral-axis to the midplane of the sensor patch. Here, we as-

sume that the piezoelectric sensor is placed on the top surfacErom definition (20), it can be argued that the spatiainorm

of the beam as shown in Fig. 3. is a suitable measure of performance for spatially distributed
The total electric charge can be obtained by integrating threar time invariant systems, such as those described in (15).

expressiom, (t) across the sensor’s length (16). Substituting theurthermore, if the system can be broken into a number of or-

solution form into (9), the induced sensor voltdde(t), at the thonormal modes, then the contribution of each mode to the total

[th sensor, can be determined as spatial*» norm of the system can be determined from (21) and
oo pmar g2 (22). Also, since the spatidf> norm of a system of the form
Vat) =7 Z / dWi’&Q(x) da qi(t) (18) _(15) is equivalentto th’egg norm of a finite-dimensional system,
i dx it can be calculated using standard software.

Another way of calculating the spatial, norm of a system is
whereY = (Lyyk3, /Cgs1)(h+hp/2) andC'is the capacitance to first obtain a state-space representation of the system and then
of the piezoelectric sensor. The integral given in the above eqy@apply definition (20) to determine a finite-dimensional system
tion is equal toly; in (14) wheni is replaced by. This equa- \yhoset, norm is equivalent to the spatial, norm of the spa-
tion implies that the sensor output consists of the contributigRyly distributed system. To demonstrate this, a state-space rep-
(\;feach mode, where each mode contribution is proportionali@sentation of the transfer functia¥(s, ) can be described as

ki-
Taking the Laplace transform of (12) and (18), the multiple (1) = Az (t) + Byw(t)
input—-multiple output (MIMO) transfer function from the ap- 2(z,t) = Cy(x)zp(t) (23)
plied actuator-voltages/,(s), to the induced voltages at the
sensorsy,(s) = [Vii(s), ..., V,3(s)]*, can be written as wherew(t) are external disturbances through the actuators. No-
- I tice that for a vibratory system such as a beafn, t) represents
Gv.(s) = Py, Z Wy, (19) the deflection at a particular point, along the structure. Such a
5% + 2Cpwis + Wi model can be obtained by truncating the series (15) and keeping
the firstV. modes. Then the spatial, norm of the transfer func-

wherePy, > 0is a constant determined by the properties of thgyn (s, z) can be shown to be equivalent to ([5], [13])
structure and of the piezoceramic patches, P, = TP. To

this end, we note that for more complicated structures, such as qan2 =11G)1? (24)

k=1
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where w(t) +__ Va(t) A Vs(t)
O G, ()
G(s) =T(sI — Ag)" By (25) -
and,
L
T = L . 2
| CaterCuayaa (26) "
K(s)
Hence, the spatiat> norm of G(s,x) can be determined by
calculating the*> norm of G(s). (@
wn +. Va _ dVs(H/dt
IV. CONTROLLER STRUCTURE L G(s)
In this section, we present a multivariable controller struc-
ture that is applicable to flexible structures consisting of highly
resonant modes with compatible and collocated actuators and
sensors. Moreover, we will establish closed-loop stability in the m(t) ~
presence of uncontrolled in-bandwidth and out-of-bandwidth K(s)
modes. In the sequel, however, we concentrate on piezoelectric
laminate structures. (®)

Let us consider the feedback control loop shown in Fig. fig.4. Feedback systems. (a) Negative feedback loop. (b) Equivalent feedback
The system is represented as a flexible structure Wittol-  SYS™
located piezoelectric actuator-sensor pairs attached to it. The
ith actuator-sensor pair is controlled independently by the ca#2dR;, corresponding to that mode are simply set to zero for all
troller K;. The measured voltages from the piezoelectric seh-Otherwise, if a mode is to be controlled,. corresponding to
SOFS,VS(t), act as the measured inputs to the Controﬂ’qtg), that mode is aSSigned a pOSitive number, .tk%,,> 0 for all <.
while the controller applies voltages to the piezoelectric actua-The resonant controller structure proposed in [1] can be

tors asyn(t) = [my, ..., m;]%. We usew(t) = [wy,...,w;]T Shown to be a special case of our resonant controller structure
to signify external disturbances acting on the structure, throuien iz = 0 for all k andz = 1, i.e., an SISO controller. The
the actuators. particular type of controller structure described here increases

A significant response of a flexible structure occurs onifhe damping of the system at the resonant frequencies, which
when the excitation frequency is near a natural frequency of thél result in the reduction of the resonant responses.
system. At these, so called resonant frequencies, the responsd® this end, it is clear that this particular controller structure
are rather significant. This is mainly due to the fact that the§gould have a highly resonant nature, so that it applies a high
structures are often very lightly damped. Hence, the task @qin at each resonant frequency of the structure that is to be
minimizing the structural vibration can be considered to be thé@ntrolled. Hence, if control parametes, d;x, and i;;, are
of minimizing the resonant responses which occur at, or ve#{osen appropriately, the closed-loop frequency response of the
close to, the structure’s natural frequencies. An ideal controli@ysStem can be considerably damped at, and close to, the res-
would significantly reduce the structural vibration at, and ne&hant frequencies. Furthermore, this controller structure is ap-
to, the resonant frequencies of the structure. However, it sho@@Rling since it has minimal effect on high-frequency spill-over
have limited effect at other frequencies. dynamics. We will prove that this particular class of controllers
A class of controllers that can achieve good damping levefsstabilizing and maintains stability in the presence of high-fre-
and avoid instability in the face of spill-over dynamics, is preduency uncontrolled dynamics and imperfect models.
sented here. These controllers apply high gain feedback at resConsider the negative feedback connection shown in
onant frequencies but have limited effect at other frequenci&dd. 4(a). Here, we assume thAf(s) has a structure defined

The controllers have a decentralized nature, and are defined®s(27) and (28). We also assume tliag(s) is a truncated
version of (19). That is,

K(s) = diag(K1(s), Ka(s), ..., K7(s)) 27) o —
Gy.(s) = Py, Pk 29
where vi(s) =Py kz_;l 52 + 20wk s + W3 (29)
N
Ki(s) = Z < ‘2“’“9(5 + Zdikwk)Q + RM) whereM > N andwy is the highest resonant mode that is to
o \sT T 2d;ipwrs + wy be controlled. We should point out that we need to work with

i=1,2,....], >0 Vi k (28) a finite-dimensional model of?y,(s) since we intend to use
stability results that are applicable to finite-dimensional linear
Here, we assume thaf modes lie within the controlled band-time-invariant systems. We also point out that it is acceptable to
width and out of these moded,. < N modes are to be con- work with a truncated version of (19) since the transfer function
trolled. The termuy;, signifies thekth modal gain of the con- (19) rolls off at higher frequencies [16]. Therefore, for large
troller for thesth actuator-sensor pair arfd;;, is an arbitrary enoughl, the stability results will extend to the full infinite-
constant. If a particular mode is not to be controlled, thgpn dimensional model of the system.
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To prove closed-loop stability of the negative feedback lognder these conditions, it will most likely have poor perfor-
in Fig. 4(a), we consider the equivalent feedback system shomance.

in Fig. 4(b) where Having established stability properties of the resonant con-
_ R troller, we now proceed to determining controller parameters via
G(s) = sGvs(s) (30) an optimization procedure.

and
K(s) = K(s) (31) V. OPTIMIZATION FOR RESONANT CONTROLLERS

- One of the interesting properties of the class of controllers
Notice thatG(s) is the transfer function from the actuatofproposed here is that they are highly resonant. Given that the
voltage to the rate of change of the sensor voli@iget)/dt.  structure is also highly resonant and the peaks are reasonably

We establish that(s) is a positive-real transfer function, byfar away from one another, this would mean that the controller
showing thatG(jw) + G(jw)* is positive-semidefinite for all effect is localized to the resonant peaks. Moreover, in order to
w. That is, control each mode, one would only need to determine three pa-
M < PR rameters, i.e.qz, d;x., and R;y,. For an SISO system this could

G(jw) + Gljw)* = Py, Z be easily done by trial and error. However, for a multivariable

b1 wi + 72Guwiw — w? plant, a more systematic method is desirable. In this section, we
— 0 0Ty show how these parameters can be determined by solving an op-
T T 20k wone — w2> timization problem.
* M o From (28) it can be observed that the controliéfs) is pa-
— Y 40U Geow? rameterized in terms af;, d;x, and ;.. Therefore, any opti-
’ i (Wi — w?)® + (2Cpwiw)? mization has to be carried out over these parameters. Our ap-
>0 weR. (32) proach, however, is to choose a set of parametgrand R;;,

first and then optimize ovet;;..
Having established the positive-realness#f), closed-loop  The state-space form of a flexible structure based on the trun-
stability follows if we can show thak (s) is strictly positive cated version of7(s,z) in (15) andGy,(s) in (19) can be
real in the weak sense, see, e.g., [17] (A stable square trangigtten in the form of
function matrixX () is strictly positive-real in the weak sense 0 I

> o . 0| _
if K(jw) + K(jw)* > 0forw € (—o0,00)). W=\ _w2 _ozw, } y(t) + [H} w(t)
. ~ . . . . b LYYy
Noticing that K(s) is diagonal, we need only consider its P Ol (4
diagonal elements. We have z(x,t) = [Ua(x) Oy (t)
. N Vi(t) =[U Oz (t) (34)
K;(jw) + K;(jw)*
N ) where
{ < Jw + 2dzkwk
k=1 " wl% +J2d7kC¢ka - w2 Z(, = dlag(Cl, ceey C]w)
n —jw + 2d;pwy n Ry, n Ry Wy, = diag(wr, ..., wnm)
w]% - 72dzkwkw — w? 70.1 —70.) H= P[\Ifl, ceey \I/]\/[]T
_ al 4azkdzsz’ U= T[\Ifl, ceey \I/]W]
B =1 (w,% — w2)2 + (2dikwkw)2 Ud(x) = [Wl(x)v ceey W]w(l’)] (35)
>0

The number of modes considered in the truncated model is
w € (—o00,00), i=1,2,...,1. (33) represented by. The stater, is [q1,...,qn, G- Gar]" -
Again, V; = [Vi1,...,V,7]* are the voltage measurements
from the piezoelectric sensors andz,t) is the transverse
deflection at a particular point along the beam.

This implies thatK (jw) = diag(K,(jw),. .., Kz(jw)) > 0
for w € (—oc,o0). Therefore, using Corollary 1.1 of [17],
the negative feed_back connectlonI@(s) andG(s) is stable. o1 4 MIMO system, each independent controliy(s)
Hence, the negative feedback connect|.on of Fig. 4 is stable. given in (28) can be written in its state-space form

Note that the class of controllers defined by (27) and (28) is

robustly stable with respect to unknown resonant frequencies a*r(t) _ 0 1 ) + 0 0
wy. and damping factorg,. Indeed, as long as the actuators T -w2 o —2DW. | vt
and sensors are collocated, positive-realness(af) is guar- mi(t) = [U;  0]&;(t) + V;Vau(2). (36)

anteed. Hence, any controlléf(s) with K(s) = (K(s)/s)

such thatK(s) is strictly positive-real in the weak sense willlf we order the vibration modes that are to be con-
ensure closed-loop stability. Furthermore, stability is guaratolled as nq,...,nn,, where N, is the number of
teed in the presence of high-frequency and in-bandwidth modeedes to be controlled, we then defind?; = diag
which are left uncontrolled. Moreover, if the resonant frequefidin, , - - - , diny. ), We = diag(wn,,...;wny,) and
cies and damping ratios of the model are incorrect, the caity- = [Gin,,-- .,Qmm,{iml, .. .,émNC]T. The termsU!, U;,
troller will not destabilize the closed-loop system. HowevegndV; can also be obtained in a straightforward manner.
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Hence, the MIMO controller can be described as follows:

The termE;,, ; is defined as

Onrxi
b 0 I - 0
0= e _obw | #0+ | | owa .
. X . " 0 v xa
m(t) =[U 0]2(t) + VVi(¢) (37) -
where Here, E;,, consists of zero elements except for the corre-
sponding row ofd;,, i.e. Ey, ((i — 1)N. + j,1) = 1.
W = diag(Wo, ..., W,) Notice that for f_lxed values ofi;;, and R;;, the system (40) is
i parameterized in terms of;,.
D =diag(Dy, ..., Dy) In order to obtain a suitable setdf, parameters, we propose
U’ = diag(U1,...,U7) the following optimization problem:
[:] = diag(U1, ..., Uz) d5, = argmin{(T.q(s,7))3 (44)
V = diag(Vi,..., V7) (38)

whereT. (s, z) represents the closed-loop transfer function
from 7w to 2. This describes the minimization of the spatél
norm of the closed-loop transfer function from input distur-
banceso to every point on the structuee Hence, we can obtain
a controller that can minimize structural vibration in a spatially
(39) averaged sense.
In Section Il we showed that the spatilh norm of (40) is

.mz]¥ are the output voltages from the€quivalent to thé{, norm of the following finite-dimensional
system:

and the controller state

&= [QInlv Qing s« s éjn(chmv éjnNC ) élnlv élnzv v
T
(.ITn(N 71>7(.ZT71NC]
Here,m = [mq,...
controller.

The closed-loop system can then be obtained from (34) and

(37) as follows: ji(t) - fifj(t) + Bu(t)
zZ(t) = lia:(t)
#(t) = AZ(t) + Bu(t) Vs(t) = Cz(t) (45)
(2,t) = Cy(x)z(t) wherel is calculated from

V.(t) = Cxz(t 40 e L _ _
) ) (40) T = / Cy(x)T Cy(z) dz.
wherez = [z 27]T and L 0 _

The optimization problem (44) can then be rewritten as

0 I 0 _ 0 min tw(B"L,B) (46)

i— -W?-HVU -2zW, -—-HU 0 subjectto ATL, + L,A+T"T =0.
- 0 0 0 I . = .
o 0 W2 _oDW Notice that hered depends om;; via (42).

We point out that for a fixed value fer;;s, itis not possible to
make the cost function arbitrarily small. Indeedjjf — o, it
can be shown that the controller in (28) reduces to a simple gain.
Ca(z) =[Ug(z) 0 0 0] (41) Inthatcase, the only way that the cost function can be made ar-

bitrarily small, is by makingy;;’s arbitrarily large. Thisis notan

where 0 and are the zero and identity matrices with the appr@PPropriate solution for the reasons that will be explained in the
priate sizes, respectively. sequel.

The matrixA can be represented as a finite sum of the fol- T find a solution to this constrained optimization problem,

lowing form: we introduce a matrix of Lagrange multipliefsand form the
Lagrangian as follows, incorporating (42)
1 N, nT D) AT 1 =11
L=tr(B"L,B)+tr{(A"L,+ L, A+T"T)S 47
A=A=23"3 wn,din, Ein, EL, (42) i )+ )53 (4N
=1 j=1

=tr(BYL,B) +tr{ ATL,S+ L,AS +TTTS
where A is independent of damping ratiy .

Here, the use ot andn; should not be confused sineg is T N
used to specify each vibration mode that is to be controlled in the -2 Z Z Wn; Qin; Ein, ET L,S
optimization process. This notation is adopted here since only i=1 j=1
a limited number of in-bandwidth modes are to be controlled. I N,

However, we will usé; to signify vibration modes in the general - 2L, Z Z Wn; din; Bin, ET S o (48)
case throughout this paper. i=1 j=1
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First-order necessary conditions for optimality can be obtained
by taking the derivatives of the Lagrangidn with respect to

TABLE
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PROPERTIES OF THEPIEZOELECTRIC LAMINATE BEAM

parametersLo, S, andd;,,; and setting the derivatives to zero. Boam X.longih. L 0600 m
That is -
Beam width, W 0.050 m
oL —BBT 1 AS+SAT =90 Beam thickness, h 0.003 m
oL, Beam Young’s Modulus, E 7.00 x 10'° N/m?
8_L —ATL, + LA+TTT =0 Beam density, p 2.770 x 10% kg/m®
a(zs . Piezoceramic X-length, L, 0.070 m
o, = —4wnj £ ; L,S Ev‘,nj =0, Piezoceramic Y-length, Ly, 0.025 m
s . _ Piezoceramic thickness, h, 2.50 x 10™* m
i=52..,Ne i=12....,I. (51) Piezoceramic Young’s Modulus, E, 6.70 x 10'° N/m?
To obtain the minimum of th&(, norm of the system, (49)—(51) ~ Charge constant, ds, —2.10 x 107° m/V
have to be solved simultaneously. However, it is not possible tc Voltage constant, gz —1.15 x 10~2 Vm/N
obtain such a closed-form solution, so a numerical approach hg Capacitance, ¢ 1.05x 107" F
to be used instead. The form given in (51) can be used as th Electromechanical coupling factor, k31 | 0.34

gradient to obtain a local minimum of the function.
To start the optimization procedure an initial guess for each
damping ratiog;, (or its Correspondinginj), has to be made. keeping the first ten structural modes, i.&f,= 10. However,
Any positived;;, can be used as a starting point since that woutBe effect of out-of-bandwidth modes has to be taken into con-
guarantee stability. Here, the modal gaing,, andR;;, are set Sideration to correct the location of the in-bandwidth zeros of
at some specific levels to obtain a sufficient reduction of eadhe truncated model as discussed in [18]-[20].
resonant response. It is, however, possible to optimize@yer To reduce the errors of the in-bandwidth zeros, we add
and R;;, as well asd;;,. feedthrough termsD,(x) and Dy, to the system outputs in
Matrices B andL only need to be calculated once, becaud84), z(z,t) andV;(t), as follows:
they are independent of damping variablgs. Matrix A is

obtained from (42), while the observability and controllability 2p(t) = Agqxp(t) + Baw(t)
Grammian matricesL, and S, are calculated by solving the 2(x,t) = Ca(a)ay(t) + Da(z)w(t)
Lyapunov equations in (49) and (50). The gradient for each V(1) = Cyoxo(t) + Dy ois(t) (52)

value of dampingl;;, is calculated from (51). The process is iter-
ated by updating the damping ratig, until a solution with ac- ) .
ceptable accuracy is obtained. Furthermore, since the optimi%‘-ere‘éld_’ B d,tht, an(iI_CV; atrr? defllcnegt;wn (342{ tWe car;' rely

tion problem is nonconvex in general, the iterative optimizatio(l:"ln experiments 1o estimate these tfeedinrougn terms. HOWever,

procedure can be carried out for a number of initial guesses, Smymation of fe(_adthrough term, () can be .|mpract|cal be-
then the best solution can be used. cause the term is a function of spatial locationFurther, the

To make the optimization concept clearer, we will demor?patial integration that is needed to calculate the system’s spa-

strate the use of this optimization process for our resonant ¢ 'ﬁl-l 7> norm (26) \_N'” be tedloqs. Thus, we decide to use the
troller in the next section. method proposed in [19] to estimate the valudf{x). Also,

the feedthrough terny ; can be determined via a procedure
similar to the one described in [21].
The feedthrough tern,(z) is calculated to minimize the
spatial H, norm of the error between the infinite-dimensional
In this section, we show how the proposed resonant controllabdel and the truncated model [19].
can be implemented to dampen vibration of a piezoelectric lam-

VI. SPATIAL RESONANT CONTROL OF A PIEZOELECTRIC
LAMINATE BEAM

inate beam. Moax .
A simply supported flexible beam—such as the one shown in Dy(x) = Z KX Wi () (53)
Fig. 1—with a collocated piezoelectric actuator-sensor pair at- k=M+1

tached to it is used in the experiments. The structure consists
of a 60 cm long uniform aluminum bar of rectangular crosghereK;** can be calculated as in [19]
section (50 mmx3 mm). The beam is pinned at both ends. A
pair of piezoelectric ceramic elements are attached symmetri-
cally to either side of the beam, 50 mm away from one end of
the beam. The piezoceramic elements used in our experiment
are PIC151 patches. These patches are 25 mm wide, 70 iderew., is chosen to lie within the interval., € (was, war41)
long, and 0.25 mm thick. The physical parameters of PIC1%hd P andW¥;, are defined in (15) and (14), respectively. The
are given in Table I. above term is calculated by considering modés+ 1 to

A model of the composite structure is obtained via modal/,,,, = 200 to obtain a reasonable approximation to the
analysis as explained in Section Il. The model is truncated Bgedthrough term.

1 : co
szt — In <wk +w
2Wco‘*‘)k

) PV, (54)

W — Weo
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damping ratio, d, ,

Fig. 5. Plot of cost function versus gain and damping ratio, mode 2.

norm
»
o

spatial H2

IS

damping ratio, d13

Fig. 6. Plot of cost function versus gain and damping ratio, mode 3.

There is still a difficulty in using feedthrough terms in themization procedure feasible, and will not increase the controller
system (52) since the spatiad; norm of the system will not bandwidth. After the inclusion of the second-order mode to the
remain finite. To avoid this problem, we replace feedthrougdystem, the state-space model of the system in (34) can be re-
terms with second-order out-of-bandwidth terms as suggestddced by the following system:
in [18]. Obviously, we have to ensure that the second order term
has a zero-frequency content that is close to (52). The resonant Ay = Ovpixv+r Ivgixnvsr
frequency of the second-order system is sebat= 16 kHz, Adlsr s Ad2uiivai
well above the bandwidth of interest of about 2 kHz. Also, a
high damping ratio of.. = 0.7 is used, so that the second-ordeWhere
system behaves like a low-pass filter. Since the controller and . ] ) 5 o
the system are highly resonant, this addition will have min- Ag = —diag(wy, ..., wyy, w7
imal effect on the optimization result. This will make the opti- Ags = =2 diag(Giwr, - -+, Cuwng, Cewe)
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norm

spatial H

10° 10 damping ratio, d13
damping ratio, d12
Fig. 7. Plot of cost function versus damping ratios.
and, LP Filter
By;=10,...,0,0,PUyy,... PUyy, 17 N\
. ) Mmax . Beam\
Calz) = |Wilz),... ., War(z),w? Y KPWi(a), .
k=M1 i I i
0,...,0, 0]
. dSPACE
Cvs = [TVU11,..., TV, Dy,w? 0, ..., 0,0] (55) LP Filter
where Ay, By, Cy, and Cy, signify the corrected system of
Ay, By, Cy4, andCy, that are defined in (34).
: . NN
Next, the closed-loop system as in (45) can be construct:
from (37) and (55) anfl can be calculated by incorporating the Signal Analyzer

orthogonality property in (10)
Fig. 8. Experimental setup.

— f 0 TN,
= 2M+1x2M+41 2M+1X2IN.+1 (56)

057 ar 057 ar A . .
2INeH1X2M AL F2INALXZTN A1 We choose a particular SISO resonant controller,d.e-,1,

of the following form:
= ‘ Minax opf
wherel’ = diag(1,...,1, wf(Ek:M_l_l(Kkl )2)1/2),
One of the advantages of this particular controller structure
is the ability to choose the resonant modes that need to be con- K (s)

[l
NE

— Gk

82 + 2d;pwis + wi

trolled. For this particular beam, the placement of the piezoelec- k=1

tric actuator-sensor pair on the beam (at 50 mm away from one 3 — W} )

end of the beam) results in relatively low control authority over = 52+ 2d s + w2’ =1 an=0.

the first resonant mode (at a frequency of about 20 Hz). The low k=1

control authority of this mode is reflected in the frequency re- 57)

sponse (actuator voltage to sensor voltage) shown in Fig. 10 in

Section VII. Thus, more control effort is needed to dampen tthéence, we have achieved a particular resonant controller
first mode than to control modes 2 and 3, for instance. In thigithout any feedthrough term by choosify,. = —«y.
experiment, we will demonstrate the controller’s effectivenessTo select the modal gains for our controller, we first need to
in controlling some specific resonant modes. Here, we will atonsider the effect of these modal gains on the cost function
tempt to control only the second and third resonant modes, gnd., the spatial, norm of the closed-loop system). Consider
will leave the first mode uncontrolled. the case when we wish to control each mode independently. A
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Fig. 9. Frequency response of the controller (input voltage to output vdtage]).

plot of the cost function versus modal gain and damping ratio fire modal gain and the damping ratio. Unfortunately, it turns
each mode can be constructed. This would allow us to obsed that this is not a desirable way of achieving our objective for
the effect of modal gain and damping ratio on our cost functionibration control. A very high-gain controller is not desirable
The plots for the second mode and the third mode are showrbiecause of excessive controller effort, sensitivity to noise, and
Figs. 5 and 6. reduction of system robustness. Furthermore, a high modal gain
Our objective here is to find a combination of modal gaingnay resultin the loss of highly localized nature of the controller.
{1}, and damping ratiosd; }, that would give a minimum  Considering Figs. 5 and 6, we choose modal gains;ef=
cost function. From Figs. 5 and 6, it can be observed that the anda; 3 = 0.4 for the second and third modes, respectively.
cost function becomes more warped as the modal gain increa3dgese gains give minimum cost function at damping ratios of
Hence, we may expect to achieve a smaller cost by increasihg = 0.0330 andd;s = 0.0209 for the second and third modes.
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Fig. 10. Simulation and experimental frequency responses (actuator voltage to sensor[Voliape

If we choose larger modal gains that give lesser cost, the opkpected to influence the resonant mode 3 significantly, and
mized damping ratios would be excessive. vice versa.

Based on these parameters, single-mode controllers foiThe optimization is then performed usidg. = 0.0330 and
modes 2 and 3 can be constructed. However, we wish to contigl = 0.0209 as a starting point. A plot of the cost function
the second and third modes simultaneously. In this exercisersus the two damping ratios is shown in Fig. 7. The optimal
modal gains of 1.5 and 0.4 are chosen for the second asimping ratios ard;> = 0.0320 andd;3 = 0.0182 as shown
third modes, respectively. These modal gains are based onlilgghe arrow in Fig. 7. It is important to note that the damping
results of the previous single-mode optimization. This choigatios obtained here are relatively close to those obtained for
is reasonable since our controller has localized propertiessatgle-mode controllers. This fact confirms that the effect of our
resonances. The controller’'s gain at resonant mode 2 is nesonant controller on the system is highly localized. Thus, our



HALIM AND MOHEIMANI: SPATIAL RESONANT CONTROL OF FLEXIBLE STRUCTURES 49

30 T T T T T T T T T T

sob e S S S ST U .

Magnitude [dB]

80 ! 1 ! ! 1 L ! ! ! !

50 100 150 200 250 300 350 400 450 500

Frequency [Hz]
T T

Magnitude [dB]

80 ! 1 i | 1 | 1 : 1 1
50 100 150 200 250 300 350 400 450 500
Frequency [Hz]

Fig. 11. Loop gainV/V]: simulation and experiment.

decision to use the modal gains obtained from a single-mo@lbe sampling frequency was set at 20 KHz. The cutoff fre-
control is reasonable. guencies of the two low-pass filters were set at 10 KHz each.
An HP89410A Dynamic Signal Analyzer was used to obtain
frequency responses from the piezoelectric laminate beam. A
Polytec PSV-300 Laser Doppler Scanning Vibrometer was also
The experiment was set at the Laboratory for Dynamics anded to obtain the frequency response of the beam’s vibration.
Control of Smart Structures at the University of Newcastle, Aug+is laser vibrometer allows accurate vibration measurement at
tralia. The experimental setup is depicted in Fig. 8. The coany point on the beam by measuring the Doppler frequency shift
troller was implemented on a dSPACE DS1103 rapid protof the laser beam that is reflected back from the vibrating beam.
typing Controller Board using Matlab and Simulink softwardmportant parameters of the beam, such as resonant frequencies

VII. EXPERIMENTAL RESULTS
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Fig. 11. (Continued.)Loop gain[V/V]: simulation and experiment.

and damping ratios, were obtained from the experimental appaedicted by the model. The resonant responses of modes 2

ratus and were used to correct our model. and 3 of the system have been reduced significantly. It can also
Our simulation and experimental results are presented lesobserved that the controller has minimal effect on modes 1

follows. The frequency response of the controller is plotteahd 4.

in Fig. 9. It can be observed that the controller has a reso-Fig. 11 shows the experimental and simulated loop gain up

nant structure, as expected. Fig. 10 shows a comparisont@b520 Hz. Our simulation gives a theoretical value of infinity

the frequency responses (actuator voltage to sensor voltafge)the gain margin and a phase margin-e85.9° at 72.1 Hz.

of the open-loop and closed-loop systems. Simulation aha infinite margin in this case is a direct consequence of the

experimental results are presented. It can be observed thatghssivity of the closed-loop system as explained in Section IV.

performance of the controller applied to the real system is Bsr a SISO system, this means that, theoretically, the Nyquist
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Fig. 12. Simulation spatial frequency response: actuator voltage—beam deflee}i®f] (open loop).
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Fig. 13. Simulation spatial frequency response: actuator voltage—beam defleetidf] (closed loop).

path never crosses the negative real axis. The experiment givesrms of the beam’s transverse deflection (deflectioAaxis,
gain marginof 19.5dB at41.7 Hz, and a phase margindif.9° see Fig. 1). The resonant responses of modes 2 and 3 have been
at 72.6 Hz. These results demonstrate a sufficient robustnessémtuced because of the controller action.
our controller. Next, a Polytec PSV-300 Laser Scanning Vibrometer was
Our controller was designed to minimize the spaktialnorm used to obtain the experimental frequency response of the
of the closed-loop system. To show the controller effect on theam’s vibration at a number of points along the beam. The
frequency response of deflection over the entire beam, we hagsults allow us to plot the spatial frequency responses of
also plotted the spatial frequency responses of the beam. the uncontrolled and controlled beam from the experiments
Figs. 12 and 13 compare the spatial frequency responseasfshown in Figs. 14 and 15, respectively. Our experiment
the uncontrolled and controlled beam using the simulation reenfirms the simulation results, where we obtain vibration
sults. The location: is measured from one end of the beanreduction for modes 2 and 3 over the entire structure. The
which is closer to the patches, while the frequency response igkperiments show that the resonant responses of modes 2 and
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Fig. 14. Experimental spatial frequency response: actuator voltage—beam deflecfibi (open loop).
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Fig. 15. Experimental spatial frequency response: actuator voltage—beam deflecfibi (closed loop).

3 have been reduced by around 20 and 15 dB respectively, ostuctural models. The controller damping factors are chosen
the entire beam. such that the spatid@ts norm of the closed-loop system is
minimized. It is observed that such a controller results in
VIIl. CONCLUSION suppression of the transverse deflection of the entire structure.

The experiment presented shows the effectiveness of the

A class of resonant controllers has been introduced in 8\ e|oped controller in reducing the structural vibrations on a
paper. These controllers can be applied to structures th‘}ilézoelectric laminate beam.

contain compatible pairs of collocated actuators and sensors.
The controller reduces resonant responses of the structure by
increasing the system damping at those resonant frequencies

p ivity of th t t | d-l tability i the[:L'] H.R.Pota, S. O. R. Moheimani, and M. Smith, “Resonant controllers for
assivity o e system guaran ees closed-loop sta ' ity In flexible structures,” irProc. 38th IEEE Conf. Decision ContPhoenix,
presence of uncontrolled high-frequency modes and inaccurate Az, Dec. 1999, pp. 631-636.

REFERENCES



HALIM AND MOHEIMANI: SPATIAL RESONANT CONTROL OF FLEXIBLE STRUCTURES 53

(2]

(3]

[4]
(3]

(6]
(71

(8]
9]
[10]

[11]
[12]

[13]

[14]
[15]

[16]

(17]

(18]

H. S. Tzou, “Integrated distributed sensing and active vibration suppresf19] S. O. R. Moheimani, “Minimizing the effect of out-of-bandwidth

sion of flexible manipulators using distributed piezoelectridsRobot. dynamics in the models of reverberant systems that arise in modal
Syst, vol. 6, no. 6, pp. 745-767, 1989. analysis: Implications on spatial .. control,” Automaticavol. 36, pp.

C. K. Lee, “Piezoelectric Laminates for Torsional and Bending Modal 1023-1031, 2000.

Control: Theory and Experiment,” Ph.D. dissertation, Cornell Univ., [20] ——, “Minimizing the effect of out of bandwidth modes in truncated
Ithaca, NY, 1987. structure models,ASME J. Dyn. Syst., Measurement, Conl. 122,

C. K. Lee and F. C. Moon, “Modal sensors/actuatosSME J. Appl. pp. 237-239, Mar. 2000.

Mechanicsvol. 57, pp. 434—441, June 1990. [21] —, “Experimental verification of the corrected transfer function of a
S. O. R. Moheimani and T. Ryall, “Considerations in placement of piezolectric laminate beam|EEE Trans. Contr. Syst. Technolol. 8,

piezoceramic actuators that are used in structural vibration control,” in pp. 660-666, July 2000.
Proc. 38th IEEE Conf. Decision ContiPhoenix, AZ, Dec. 1999, pp.

1118-1123.

R. L. Clark, W. R. Saunders, and G. P. GibBslaptive Structures Dy-

namics and Control New York: Wiley, 1998.

E. K. Dimitriadis, C. R. Fuller, and C. A. Rogers, “Piezoelectric actu Dunant Halim was born in Indonesia in 1974. He
ators for distributed vibration excitation of thin plate3SME J. Vibr. received the B.Eng. degree (first class honors) in
Acoust, vol. 113, pp. 100-107, Jan. 1991. aerospace engineering from_the Roya] Melbourne
C. R. Fuller, S. J. Elliot, and P. A. Nelsoctive Control of Vibra- Institute of Technology, Victoria, Australia, in 1999.
tion. New York: Academic, 1996. He is currently pursuing the Ph.D. degree in the
H.T.Banks, R. C. Smith, and Y. Wan§mart Material Structures: Mod- Department of Electrical and Computer Engineering
eling, Estimation and Control New York: Wiley, 1996. at the University of Newcastle, NSW, Australia.

H. R. Pota and T. E. Alberts, “Multivariable transfer functions for His current research is in vibration control of smart
slewing piezoelectric laminate beanASME J. Dyn. Syst., Measure- l structures using piezoelectric devices.

ment, Contr.vol. 117, pp. 352359, Sept. 1995.

M. J. Balas, “Active control of flexible systemsJ. Optim. Theory Ap-
plicat., vol. 25, no. 3, pp. 415-436, 1978.

——, “Feedback control of flexible systemslEEE Trans. Automat.
Contr, vol. AC-23, 1978.

S. O. R. Moheimani and M. Fu, “Spatial. norm of flexible structures
and its application in model order selection,”RBmoc. 37th IEEE Conf.
Decision Contr. Tampa, FL, Dec. 1998, pp. 3623-3624.

L. Meirovitch, Elements of Vibration Analysis New York: McGraw-
Hill, 1975.

H. Kwakernaak and R. Sivan, Modern Signals and
Systems Englewood Cliffs, N.J.: Prentice-Hall, 1991.

P. C. Hughes, “Space structure vibration modes: How many exi
Which ones are important?lEEE Contr. Syst. Magpp. 22-28, Feb.
1987. In 1997, he joined the Department of Electrical
S. M. Joshi and S. Gupta, “On a class of marginally stable positive-real and Computer Engineering at the University of
systems,'IEEE Trans. Automat. Contwol. 41, pp. 152-155, Jan. 1996. Newcastle, where he is currently a Senior Lecturer. He is a member of the
R. L. Clark, “Accounting for out-of-bandwidth modes in the assume€entre for Integrated Dynamics and Control, an Australian Government
modes approach: Implications on colocated output feedback controfpecial Research Centre. His interests include robust control and filtering,
Trans. ASMEvol. 119, pp. 390-395, Sept. 1997. active control of noise and vibrations, smart structures, and signal processing.

S. O. Reza Moheimani(M’'97) was born in Shiraz,
Iran, in 1967. He received the B.Sc. degree from
Shiraz University, Iran, in 1990 and the M.Eng.Sc.
and Ph.D. degrees from the University of New South
Wales, Australia, in 1993 and 1996, respectively, all
in electrical and electronic engineering.

In 1996, he was a Postdoctoral Research Fellow at
the School of Electrical and Electronic Engineering,
Australian Defence Force Academy, Canberra.




