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Spatial Resonant Control of Flexible
Structures—Application to a Piezoelectric

Laminate Beam
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Abstract—This paper introduces a class of resonant controllers
that can be used to minimize structural vibration using collocated
piezoelectric actuator-sensor pairs. The proposed controller
increases the damping of the structure so as to minimize a chosen
number of resonant responses. The controller can be tuned to a
chosen number of modes. This results in controllers of minimal
dimension. The controller structure is chosen such that closed-loop
stability is guaranteed. Moreover, the controller can be designed
such that the spatial 2 norm of the system is minimized. This will
guarantee average reduction of vibration throughout the entire
structure. Experimental validation on a simply supported beam is
presented showing the effectiveness of the proposed controller.

Index Terms—Flexible structures, piezoelectric actuator, piezo-
electric sensor, smart structures, spatial 2 norm, spatial resonant
control, vibrations.

I. INTRODUCTION

E XAMPLES of flexible structures can be found in many
systems including aircraft, bridges, and buildings. In re-

ality, however, all structures can be regarded as flexible since
they experience structural deformation under some loading, no
matter how small. Structures experience vibrations, whose ef-
fects are more significant for less rigid structures. In many sit-
uations, it is important to be able to minimize these structural
vibrations, as they may affect the stability and performance of
the structures.

It is well known that it is possible to design controllers which
effectively minimize structural vibrations. It is known that the
response of flexible structures are relatively large at, or close
to, their resonant frequencies. Therefore, it is desirable to have
controllers that minimize structural responses at those resonant
frequencies. The controller proposed in this paper is motivated
by resonant controllers originally developed in [1]. We intro-
duce a more general class of controllers that allows for control
of multivariable resonant systems and includes the work of [1]
as a special case. The controller is chosen to minimize vibra-
tion by increasing the system damping properties for individual
modes. The advantage of this particular controller structure is
that, in many noise and vibration control problems, it may not
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be necessary to suppress structural vibration due to every single
mode. This is an interesting property which results in controllers
of dimensions, not more than necessary.

The proposed controller is applied to a piezoelectric laminate
beam. Piezoelectricity was discovered in 1880 by French sci-
entists Pierre and Paul-Jacques Curie. They observed that when
they compressed certain types of crystals including quartz, tour-
maline, and Rochelle salt, along certain axes, a voltage was pro-
duced on the surface of the crystal. In the following year, they
discovered the converse effect, namely that such crystals elon-
gated upon the application of an electric current. The piezoelec-
tric effect in natural crystals is rather weak. Therefore, there are
limitations in employing them as actuators and sensors for vi-
bration control purposes. Recently, there has been remarkable
progress in this field of materials science, whichinter-alia has
resulted in availability of inexpensive piezoelectric materials.
These materials are capable of transforming mechanical energy
into electrical energy and vice versa in an efficient way.

There are a number of piezoelectric materials that are
currently being used. These include poly-vinylidene flouride
(PVDF), which is a semicrystalline polymer film and lead
zirconate titanate (PZT), which is a piezoelectric ceramic
material. These materials strain when exposed to a voltage
and, conversely, produce a voltage when strained. This is
due to the permanent dipole nature of these materials. For a
detailed discussion of electromechanical properties of these
materials the reader is referred to [2]–[4]. When used for
vibration control purposes, piezoelectric patches are bonded
to the surface or are manufactured into the flexible structure
membrane. These patches can then be used as actuators and
sensors. An interesting property of piezoelectric actuators and
sensors is that they are spatially distributed over the surface
which is being sensed or controlled. This property distinguishes
them from discrete actuators and sensors that are often used
in control of flexible structures. The use of these piezoelectric
actuators and sensors have shown promising applications in
active vibration control of flexible structures [5]–[10].

An important issue in designing a controller for a flexible
structure is whether the developed closed-loop system will have
sufficient robustness to deal with uncertainties in the system
model. Moreover, transfer functions of flexible structures
consist of a large number of highly resonant modes. Controllers
are often designed for a limited number of modes that lie
within a particular bandwidth and thus these controllers have
to guarantee stability in the presence of uncontrolled modes. A
controller that is designed for in-bandwidth modes, may result
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in instabilities once implemented on the real systems. This
problem is referred to as the spill-over effect [11], [12]. The
controller that is proposed in this paper guarantees closed-loop
stability in the presence of uncontrolled modes. Moreover, it
maintains closed-loop stability even if the resonant frequencies
of the system are changed.

The controller is designed such that the spatialnorm of
the closed-loop system is minimized. The concept of spatial
norm was introduced in [5], [13]. Minimizing the spatial
norm of the system will guarantee vibration reduction over the
entire structure in an average sense. Flexible structures are dis-
tributed parameter systems. Therefore, vibration of each point is
dynamically related to the vibration of every other point over the
structure. If a controller is designed with a view to minimizing
structural vibration at a limited number of points, it could have
negative effects on the vibration profile for the rest of the struc-
ture.

This paper is organized as follows. Section II describes the
dynamics of flexible beam structures such as those with col-
located piezoelectric actuator-sensor pairs. This section is of a
tutorial nature and is included as a ready reference source for
researchers entering this field. Section III briefly describes the
notion of spatial norm and its use as a performance measure
for flexible structures. Section IV presents a controller struc-
ture which guarantees closed-loop stability. In Section V, we
develop a spatial norm optimization procedure using the La-
grange multiplier technique to optimize over the controller pa-
rameters. Section VI discusses the implementation of our single
input–single output (SISO) resonant controller to a piezoelectric
laminate beam with simply supported ends. Section VII presents
experimental validation of the SISO resonant controller applied
to the piezoelectric laminate beam. The last section draws con-
clusions.

II. M ODELS OFFLEXIBLE BEAM STRUCTURES

In this section, we will develop a model for a piezolectric lam-
inate beam with a number of collocated actuator-sensor pairs
using a modal analysis technique. This section has a tutorial na-
ture. The material is available elsewhere in the literature. How-
ever, we believe that there is value summarizing it here as a
ready reference source for others.

A. Dynamics of a Piezoelectric Laminate Beam

Consider a flexible structure with a number of piezoelectric
actuator-sensor pairs attached to it as shown in Fig. 1. Suppose
there are collocated actuator-sensor pairs distributed along the
structure. Piezoelectric patches on one side of the beam are used
as sensors, while patches on the other side serve as actuators.
Voltages that are applied to actuating patches are represented
by .

We assume that a model of the structure is obtained via the
modal analysis procedure. This procedure requires one to find
a solution to the partial differential equation (PDE) which de-
scribes the dynamics of the flexible structure. The partial dif-
ferential equation can be solved independently for each mode
by using the orthogonality properties of its eigenfunctions,.
Such models have the interesting property that they describe

Fig. 1. A simply supported beam with a number of collocated piezoelectric
patches.

Fig. 2. A beam with a piezoelectric patch attached.

spatial, as well as, spectral properties of the system. The spa-
tial information embedded in these models can then be used to
design controllers which guarantee a certain level of damping
for the entire structure.

Consider a homogeneous Euler–Bernoulli beam with dimen-
sions of as in Fig. 2. The piezoelectric actuators
and sensors have dimensions of , where is
the thickness of each patch. We denote the beam transverse de-
flection at point and at time by , assuming the beam
as a one-dimensional system only. The PDE which governs the
dynamics of the homogeneous beam is as follows [6], [14]:

(1)

where , and represent density, cross-sectional area,
Young’s modulus of elasticity, and moment of inertia about the
neutral axis of the beam, respectively. The moment acting on
the beam is denoted by .

Initially, the relationship between the voltage applied to the
piezoelectric patch and the moment generated by the patch
needs to be obtained. The approach presented below follows
the procedures in [7] and [8] and is included for the sake of
completeness and clarity.

We consider theth piezoelectric actuator patch attached to
the beam. The overall strain acting inside the actuator in the

direction is a combination of the effect of the induced strain
due to bending and the unconstrained strain,. The uncon-
strained strain is the strain produced by the piezoceramic patch
when the patch is free to expand or to contract [7], [8]. Ref-
erences [8] and [9] give an expression for the unconstrained
strain (see Fig. 3) of the piezoelectric material due to the ap-
plied voltage

(2)
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Fig. 3. Piezoelectric patches attached to a beam.

The piezoelectric charge constant is denoted by, while the
applied voltage to theth piezoelectric actuator is denoted by

.
We use Hooke’s law to obtain an expression for stress in terms

of strain

(3)

(4)

where and are the actuator axial stress and the beam axial
stress in the direction, respectively, and is the Young’s
modulus of elasticity of the actuator.

The strain distribution across the beam thickness is assumed
to be linear for pure bending case, , as shown in Fig. 3.
The strain gradient is determined from the moment equilib-
rium equation about the beam’s neutral axis

(5)

Here, we assume perfect bonding between the piezoelectric
patch and the beam. This amounts to having no shearing effect
in the patch-structure interface. We also assume that the neutral
axis of the structure coincides with that of the beam alone and
the sensor does not contribute to the structural properties. This
is also a reasonable assumption if the patches are relatively
much thinner than the beam’s thickness.

From (5) and after some manipulation, the expression for the
relationship between the unconstrained actuator strainand
the bending strain gradient is found to be

(6)

where .
To incorporate the placement of the patch on the beam’s sur-

face in the direction, the use of step function is em-
ployed, where is zero for and one for

. Here, and denote the location of theth piezo-
electric patch’s ends along the axis. Thus, the moment trans-
ferred to the beam from the piezoelectric actuator can be
obtained from the first integral term in (5) using (6)

(7)

where is a constant based on the
properties of the beam and the piezoceramic patches. The
forcing term in the PDE (1) can then be determined from the

expression, using the property of Dirac’s delta function
[15],

(8)

where is the th derivative of and is continuous at .
Having obtained the piezoelectric moment expression, one

needs to solve the PDE (1). The modal analysis technique is
used for this purpose. We consider a solution of the form

(9)

Here, is determined from the eigenvalue problem, which
is obtained by substituting (9) into (1) with no forcing function.

The eigenfunction can be shown to have orthogonality
properties

(10)

(11)

where describes the natural frequency of the beam at mode
and is Kronecker’s delta function.
A set of uncoupled ordinary differential equations (ODEs)

can be obtained from the PDE (1) by using the orthogonality
properties (10) and (11), and Dirac’s delta function property
(8) as well as the solution in (9). If the contribution of forcing
functions generated by allpiezoelectric actuators is included,
we obtain the following ODEs:

(12)

where and is the generalized coordinate of
mode . The subscript denotes theth actuator. It is assumed
that all piezoelectric actuators and sensors that are used here
are made from a similar material. A proportional damping term

for each mode has been added into the equation of
motion in (12). Further, can be obtained from

(13)

(14)

Applying the Laplace transform to (12), assuming zero initial
conditions, we obtain the multiple input–infinite output (MIIO)
transfer function from the applied actuator-voltages,

, to the beam deflection at loca-
tion

(15)
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where . Here, is a function of the lo-
cation of the th piezoelectric actuator-sensor pair and the eigen-
function, . Also, is a constant that is dependent on the
properties of the structure and the piezoceramic patches, i.e.,

. We note that a similar methodology can be em-
ployed to obtain models of plates with certain boundary condi-
tions.

B. Piezoelectric Sensor

In this paper, piezoelectric patches are used as sensors by
placing the actuators and the sensors at the same location
on both sides of the beam (i.e., we collocate the actuators
and sensors). We consider theth piezoelectric sensor patch.
Suppose the actuators produce forcing moments that vibrate the
beam. This vibration induces strain inside the beam element.
This strain will then induce an electric charge inside the
piezoelectric sensor due to the piezoelectric effect. The electric
charge distribution , i.e., the charge per unit length, for a
dimensional structure is, as described in [10], given by

(16)

where is the electromechanical coupling factor andis the
piezoelectric voltage constant in thedirection. Using Hooke’s
law for the beam deflection in the direction, , the expression
for the strain in the sensor patch is obtained as

(17)

where is the normal distance from the beam’s
neutral-axis to the midplane of the sensor patch. Here, we as-
sume that the piezoelectric sensor is placed on the top surface
of the beam as shown in Fig. 3.

The total electric charge can be obtained by integrating the
expression across the sensor’s length (16). Substituting the
solution form into (9), the induced sensor voltage , at the
th sensor, can be determined as

(18)

where and is the capacitance
of the piezoelectric sensor. The integral given in the above equa-
tion is equal to in (14) when is replaced by. This equa-
tion implies that the sensor output consists of the contribution
of each mode, where each mode contribution is proportional to

.
Taking the Laplace transform of (12) and (18), the multiple

input–multiple output (MIMO) transfer function from the ap-
plied actuator-voltages, , to the induced voltages at the
sensors, , can be written as

(19)

where is a constant determined by the properties of the
structure and of the piezoceramic patches, i.e., . To
this end, we note that for more complicated structures, such as

plates with certain boundary conditions, similar transfer func-
tions can be obtained.

III. SPATIAL NORM

This section presents an overview of the concept of spatial
norm that will be used in the optimization procedure in Sec-

tion V. Consider the transfer function of a flexible structure,
, as in (15). This model describes the structural deflec-

tion at some point . The norm of can be used as a
measure of performance at the point. However, the norm of

cannot be used as a global performance measure since
it is calculated based on the response at a specific location on
the structure [5], [13]. To overcome this difficulty, the notion of
spatial norm was introduced in [5] and [13].

The spatial norm of the transfer function is de-
fined [5], [13] as

(20)

where is the set over which is defined. For a beam,
. Here, represents the trace of the matrix. Taking

advantage of the orthonormality of the eigenfunctions,, in
(10), it can be shown that

(21)

where

(22)

From definition (20), it can be argued that the spatialnorm
is a suitable measure of performance for spatially distributed
linear time invariant systems, such as those described in (15).
Furthermore, if the system can be broken into a number of or-
thonormal modes, then the contribution of each mode to the total
spatial norm of the system can be determined from (21) and
(22). Also, since the spatial norm of a system of the form
(15) is equivalent to the norm of a finite-dimensional system,
it can be calculated using standard software.

Another way of calculating the spatial norm of a system is
to first obtain a state-space representation of the system and then
to apply definition (20) to determine a finite-dimensional system
whose norm is equivalent to the spatial norm of the spa-
tially distributed system. To demonstrate this, a state-space rep-
resentation of the transfer function can be described as

(23)

where are external disturbances through the actuators. No-
tice that for a vibratory system such as a beam, represents
the deflection at a particular point,, along the structure. Such a
model can be obtained by truncating the series (15) and keeping
the first modes. Then the spatial norm of the transfer func-
tion can be shown to be equivalent to ([5], [13])

(24)
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where

(25)

and,

(26)

Hence, the spatial norm of can be determined by
calculating the norm of .

IV. CONTROLLER STRUCTURE

In this section, we present a multivariable controller struc-
ture that is applicable to flexible structures consisting of highly
resonant modes with compatible and collocated actuators and
sensors. Moreover, we will establish closed-loop stability in the
presence of uncontrolled in-bandwidth and out-of-bandwidth
modes. In the sequel, however, we concentrate on piezoelectric
laminate structures.

Let us consider the feedback control loop shown in Fig. 1.
The system is represented as a flexible structure withcol-
located piezoelectric actuator-sensor pairs attached to it. The
th actuator-sensor pair is controlled independently by the con-

troller . The measured voltages from the piezoelectric sen-
sors, , act as the measured inputs to the controller ,
while the controller applies voltages to the piezoelectric actua-
tors as, . We use
to signify external disturbances acting on the structure, through
the actuators.

A significant response of a flexible structure occurs only
when the excitation frequency is near a natural frequency of the
system. At these, so called resonant frequencies, the responses
are rather significant. This is mainly due to the fact that these
structures are often very lightly damped. Hence, the task of
minimizing the structural vibration can be considered to be that
of minimizing the resonant responses which occur at, or very
close to, the structure’s natural frequencies. An ideal controller
would significantly reduce the structural vibration at, and near
to, the resonant frequencies of the structure. However, it should
have limited effect at other frequencies.

A class of controllers that can achieve good damping levels
and avoid instability in the face of spill-over dynamics, is pre-
sented here. These controllers apply high gain feedback at res-
onant frequencies but have limited effect at other frequencies.
The controllers have a decentralized nature, and are defined as

(27)

where

(28)

Here, we assume that modes lie within the controlled band-
width and out of these modes, modes are to be con-
trolled. The term signifies the th modal gain of the con-
troller for the th actuator-sensor pair and is an arbitrary
constant. If a particular mode is not to be controlled, then

(a)

(b)

Fig. 4. Feedback systems. (a) Negative feedback loop. (b) Equivalent feedback
system.

and corresponding to that mode are simply set to zero for all
. Otherwise, if a mode is to be controlled, corresponding to

that mode is assigned a positive number, i.e., for all .
The resonant controller structure proposed in [1] can be

shown to be a special case of our resonant controller structure
when for all and , i.e., an SISO controller. The
particular type of controller structure described here increases
the damping of the system at the resonant frequencies, which
will result in the reduction of the resonant responses.

To this end, it is clear that this particular controller structure
should have a highly resonant nature, so that it applies a high
gain at each resonant frequency of the structure that is to be
controlled. Hence, if control parameters and are
chosen appropriately, the closed-loop frequency response of the
system can be considerably damped at, and close to, the res-
onant frequencies. Furthermore, this controller structure is ap-
pealing since it has minimal effect on high-frequency spill-over
dynamics. We will prove that this particular class of controllers
is stabilizing and maintains stability in the presence of high-fre-
quency uncontrolled dynamics and imperfect models.

Consider the negative feedback connection shown in
Fig. 4(a). Here, we assume that has a structure defined
by (27) and (28). We also assume that is a truncated
version of (19). That is,

(29)

where and is the highest resonant mode that is to
be controlled. We should point out that we need to work with
a finite-dimensional model of since we intend to use
stability results that are applicable to finite-dimensional linear
time-invariant systems. We also point out that it is acceptable to
work with a truncated version of (19) since the transfer function
(19) rolls off at higher frequencies [16]. Therefore, for large
enough , the stability results will extend to the full infinite-
dimensional model of the system.
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To prove closed-loop stability of the negative feedback loop
in Fig. 4(a), we consider the equivalent feedback system shown
in Fig. 4(b) where

(30)

and

(31)

Notice that is the transfer function from the actuator
voltage to the rate of change of the sensor voltage .

We establish that is a positive-real transfer function, by
showing that is positive-semidefinite for all

. That is,

(32)

Having established the positive-realness of , closed-loop
stability follows if we can show that is strictly positive
real in the weak sense, see, e.g., [17] (A stable square transfer
function matrix is strictly positive-real in the weak sense
if for ).

Noticing that is diagonal, we need only consider its
diagonal elements. We have

(33)

This implies that
for . Therefore, using Corollary 1.1 of [17],
the negative feedback connection of and is stable.
Hence, the negative feedback connection of Fig. 4 is stable.

Note that the class of controllers defined by (27) and (28) is
robustly stable with respect to unknown resonant frequencies

and damping factors . Indeed, as long as the actuators
and sensors are collocated, positive-realness of is guar-
anteed. Hence, any controller with
such that is strictly positive-real in the weak sense will
ensure closed-loop stability. Furthermore, stability is guaran-
teed in the presence of high-frequency and in-bandwidth modes
which are left uncontrolled. Moreover, if the resonant frequen-
cies and damping ratios of the model are incorrect, the con-
troller will not destabilize the closed-loop system. However,

under these conditions, it will most likely have poor perfor-
mance.

Having established stability properties of the resonant con-
troller, we now proceed to determining controller parameters via
an optimization procedure.

V. OPTIMIZATION FOR RESONANT CONTROLLERS

One of the interesting properties of the class of controllers
proposed here is that they are highly resonant. Given that the
structure is also highly resonant and the peaks are reasonably
far away from one another, this would mean that the controller
effect is localized to the resonant peaks. Moreover, in order to
control each mode, one would only need to determine three pa-
rameters, i.e., and . For an SISO system this could
be easily done by trial and error. However, for a multivariable
plant, a more systematic method is desirable. In this section, we
show how these parameters can be determined by solving an op-
timization problem.

From (28) it can be observed that the controller is pa-
rameterized in terms of and . Therefore, any opti-
mization has to be carried out over these parameters. Our ap-
proach, however, is to choose a set of parametersand
first and then optimize over .

The state-space form of a flexible structure based on the trun-
cated version of in (15) and in (19) can be
written in the form of

(34)

where

(35)

The number of modes considered in the truncated model is
represented by . The state is .
Again, are the voltage measurements
from the piezoelectric sensors and is the transverse
deflection at a particular point along the beam.

For a MIMO system, each independent controller
given in (28) can be written in its state-space form

(36)

If we order the vibration modes that are to be con-
trolled as , where is the number of
modes to be controlled, we then define:

and
. The terms

and can also be obtained in a straightforward manner.
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Hence, the MIMO controller can be described as follows:

(37)

where

(38)

and the controller state

(39)

Here, are the output voltages from the
controller.

The closed-loop system can then be obtained from (34) and
(37) as follows:

(40)

where and

(41)

where 0 and are the zero and identity matrices with the appro-
priate sizes, respectively.

The matrix can be represented as a finite sum of the fol-
lowing form:

(42)

where is independent of damping ratio .
Here, the use of and should not be confused since is

used to specify each vibration mode that is to be controlled in the
optimization process. This notation is adopted here since only
a limited number of in-bandwidth modes are to be controlled.
However, we will use to signify vibration modes in the general
case throughout this paper.

The term is defined as

(43)

Here, consists of zero elements except for the corre-
sponding row of , i.e. .
Notice that for fixed values of and , the system (40) is
parameterized in terms of .

In order to obtain a suitable set of parameters, we propose
the following optimization problem:

(44)

where represents the closed-loop transfer function
from to . This describes the minimization of the spatial
norm of the closed-loop transfer function from input distur-
bances to every point on the structure. Hence, we can obtain
a controller that can minimize structural vibration in a spatially
averaged sense.

In Section III we showed that the spatial norm of (40) is
equivalent to the norm of the following finite-dimensional
system:

(45)

where is calculated from

The optimization problem (44) can then be rewritten as

subject to
(46)

Notice that here depends on via (42).
We point out that for a fixed value for s, it is not possible to

make the cost function arbitrarily small. Indeed, if , it
can be shown that the controller in (28) reduces to a simple gain.
In that case, the only way that the cost function can be made ar-
bitrarily small, is by making ’s arbitrarily large. This is not an
appropriate solution for the reasons that will be explained in the
sequel.

To find a solution to this constrained optimization problem,
we introduce a matrix of Lagrange multipliersand form the
Lagrangian as follows, incorporating (42)

(47)

(48)
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First-order necessary conditions for optimality can be obtained
by taking the derivatives of the Lagrangian, with respect to
parameters and and setting the derivatives to zero.
That is

(49)

(50)

(51)

To obtain the minimum of the norm of the system, (49)–(51)
have to be solved simultaneously. However, it is not possible to
obtain such a closed-form solution, so a numerical approach has
to be used instead. The form given in (51) can be used as the
gradient to obtain a local minimum of the function.

To start the optimization procedure an initial guess for each
damping ratio, (or its corresponding ), has to be made.
Any positive can be used as a starting point since that would
guarantee stability. Here, the modal gains,, and are set
at some specific levels to obtain a sufficient reduction of each
resonant response. It is, however, possible to optimize over
and as well as .

Matrices and only need to be calculated once, because
they are independent of damping variables. Matrix is
obtained from (42), while the observability and controllability
Grammian matrices, and , are calculated by solving the
Lyapunov equations in (49) and (50). The gradient for each
value of damping is calculated from (51). The process is iter-
ated by updating the damping ratio until a solution with ac-
ceptable accuracy is obtained. Furthermore, since the optimiza-
tion problem is nonconvex in general, the iterative optimization
procedure can be carried out for a number of initial guesses, and
then the best solution can be used.

To make the optimization concept clearer, we will demon-
strate the use of this optimization process for our resonant con-
troller in the next section.

VI. SPATIAL RESONANT CONTROL OF A PIEZOELECTRIC

LAMINATE BEAM

In this section, we show how the proposed resonant controller
can be implemented to dampen vibration of a piezoelectric lam-
inate beam.

A simply supported flexible beam—such as the one shown in
Fig. 1—with a collocated piezoelectric actuator-sensor pair at-
tached to it is used in the experiments. The structure consists
of a 60 cm long uniform aluminum bar of rectangular cross
section (50 mm 3 mm). The beam is pinned at both ends. A
pair of piezoelectric ceramic elements are attached symmetri-
cally to either side of the beam, 50 mm away from one end of
the beam. The piezoceramic elements used in our experiment
are PIC151 patches. These patches are 25 mm wide, 70 mm
long, and 0.25 mm thick. The physical parameters of PIC151
are given in Table I.

A model of the composite structure is obtained via modal
analysis as explained in Section II. The model is truncated by

TABLE I
PROPERTIES OF THEPIEZOELECTRICLAMINATE BEAM

keeping the first ten structural modes, i.e., . However,
the effect of out-of-bandwidth modes has to be taken into con-
sideration to correct the location of the in-bandwidth zeros of
the truncated model as discussed in [18]–[20].

To reduce the errors of the in-bandwidth zeros, we add
feedthrough terms, and , to the system outputs in
(34), and , as follows:

(52)

where and are defined in (34). We can rely
on experiments to estimate these feedthrough terms. However,
estimation of feedthrough term can be impractical be-
cause the term is a function of spatial location. Further, the
spatial integration that is needed to calculate the system’s spa-
tial norm (26) will be tedious. Thus, we decide to use the
method proposed in [19] to estimate the value of . Also,
the feedthrough term can be determined via a procedure
similar to the one described in [21].

The feedthrough term is calculated to minimize the
spatial norm of the error between the infinite-dimensional
model and the truncated model [19].

(53)

where can be calculated as in [19]

(54)

Here, is chosen to lie within the interval
and and are defined in (15) and (14), respectively. The
above term is calculated by considering modes to

to obtain a reasonable approximation to the
feedthrough term.



HALIM AND MOHEIMANI: SPATIAL RESONANT CONTROL OF FLEXIBLE STRUCTURES 45

Fig. 5. Plot of cost function versus gain and damping ratio, mode 2.

Fig. 6. Plot of cost function versus gain and damping ratio, mode 3.

There is still a difficulty in using feedthrough terms in the
system (52) since the spatial norm of the system will not
remain finite. To avoid this problem, we replace feedthrough
terms with second-order out-of-bandwidth terms as suggested
in [18]. Obviously, we have to ensure that the second order term
has a zero-frequency content that is close to (52). The resonant
frequency of the second-order system is set at kHz,
well above the bandwidth of interest of about 2 kHz. Also, a
high damping ratio of is used, so that the second-order
system behaves like a low-pass filter. Since the controller and
the system are highly resonant, this addition will have min-
imal effect on the optimization result. This will make the opti-

mization procedure feasible, and will not increase the controller
bandwidth. After the inclusion of the second-order mode to the
system, the state-space model of the system in (34) can be re-
placed by the following system:

where
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Fig. 7. Plot of cost function versus damping ratios.

and,

(55)

where and signify the corrected system of
and that are defined in (34).

Next, the closed-loop system as in (45) can be constructed
from (37) and (55) and can be calculated by incorporating the
orthogonality property in (10)

(56)

where .
One of the advantages of this particular controller structure

is the ability to choose the resonant modes that need to be con-
trolled. For this particular beam, the placement of the piezoelec-
tric actuator-sensor pair on the beam (at 50 mm away from one
end of the beam) results in relatively low control authority over
the first resonant mode (at a frequency of about 20 Hz). The low
control authority of this mode is reflected in the frequency re-
sponse (actuator voltage to sensor voltage) shown in Fig. 10 in
Section VII. Thus, more control effort is needed to dampen the
first mode than to control modes 2 and 3, for instance. In this
experiment, we will demonstrate the controller’s effectiveness
in controlling some specific resonant modes. Here, we will at-
tempt to control only the second and third resonant modes, and
will leave the first mode uncontrolled.

Fig. 8. Experimental setup.

We choose a particular SISO resonant controller, i.e., ,
of the following form:

(57)

Hence, we have achieved a particular resonant controller
without any feedthrough term by choosing .

To select the modal gains for our controller, we first need to
consider the effect of these modal gains on the cost function
(i.e., the spatial norm of the closed-loop system). Consider
the case when we wish to control each mode independently. A
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Fig. 9. Frequency response of the controller (input voltage to output voltage[V=V ]).

plot of the cost function versus modal gain and damping ratio for
each mode can be constructed. This would allow us to observe
the effect of modal gain and damping ratio on our cost function.
The plots for the second mode and the third mode are shown in
Figs. 5 and 6.

Our objective here is to find a combination of modal gains,
, and damping ratios, , that would give a minimum

cost function. From Figs. 5 and 6, it can be observed that the
cost function becomes more warped as the modal gain increases.
Hence, we may expect to achieve a smaller cost by increasing

the modal gain and the damping ratio. Unfortunately, it turns
out that this is not a desirable way of achieving our objective for
vibration control. A very high-gain controller is not desirable
because of excessive controller effort, sensitivity to noise, and
reduction of system robustness. Furthermore, a high modal gain
may result in the loss of highly localized nature of the controller.

Considering Figs. 5 and 6, we choose modal gains of
and for the second and third modes, respectively.

These gains give minimum cost function at damping ratios of
and for the second and third modes.
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Fig. 10. Simulation and experimental frequency responses (actuator voltage to sensor voltage[V=V ]).

If we choose larger modal gains that give lesser cost, the opti-
mized damping ratios would be excessive.

Based on these parameters, single-mode controllers for
modes 2 and 3 can be constructed. However, we wish to control
the second and third modes simultaneously. In this exercise,
modal gains of 1.5 and 0.4 are chosen for the second and
third modes, respectively. These modal gains are based on the
results of the previous single-mode optimization. This choice
is reasonable since our controller has localized properties at
resonances. The controller’s gain at resonant mode 2 is not

expected to influence the resonant mode 3 significantly, and
vice versa.

The optimization is then performed using and
as a starting point. A plot of the cost function

versus the two damping ratios is shown in Fig. 7. The optimal
damping ratios are and as shown
by the arrow in Fig. 7. It is important to note that the damping
ratios obtained here are relatively close to those obtained for
single-mode controllers. This fact confirms that the effect of our
resonant controller on the system is highly localized. Thus, our
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Fig. 11. Loop gain[V=V ]: simulation and experiment.

decision to use the modal gains obtained from a single-mode
control is reasonable.

VII. EXPERIMENTAL RESULTS

The experiment was set at the Laboratory for Dynamics and
Control of Smart Structures at the University of Newcastle, Aus-
tralia. The experimental setup is depicted in Fig. 8. The con-
troller was implemented on a dSPACE DS1103 rapid proto-
typing Controller Board using Matlab and Simulink software.

The sampling frequency was set at 20 KHz. The cutoff fre-
quencies of the two low-pass filters were set at 10 KHz each.
An HP89410A Dynamic Signal Analyzer was used to obtain
frequency responses from the piezoelectric laminate beam. A
Polytec PSV-300 Laser Doppler Scanning Vibrometer was also
used to obtain the frequency response of the beam’s vibration.
This laser vibrometer allows accurate vibration measurement at
any point on the beam by measuring the Doppler frequency shift
of the laser beam that is reflected back from the vibrating beam.
Important parameters of the beam, such as resonant frequencies
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Fig. 11. (Continued.)Loop gain[V=V ]: simulation and experiment.

and damping ratios, were obtained from the experimental appa-
ratus and were used to correct our model.

Our simulation and experimental results are presented as
follows. The frequency response of the controller is plotted
in Fig. 9. It can be observed that the controller has a reso-
nant structure, as expected. Fig. 10 shows a comparison of
the frequency responses (actuator voltage to sensor voltage)
of the open-loop and closed-loop systems. Simulation and
experimental results are presented. It can be observed that the
performance of the controller applied to the real system is as

predicted by the model. The resonant responses of modes 2
and 3 of the system have been reduced significantly. It can also
be observed that the controller has minimal effect on modes 1
and 4.

Fig. 11 shows the experimental and simulated loop gain up
to 520 Hz. Our simulation gives a theoretical value of infinity
for the gain margin and a phase margin of at 72.1 Hz.
An infinite margin in this case is a direct consequence of the
passivity of the closed-loop system as explained in Section IV.
For a SISO system, this means that, theoretically, the Nyquist
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Fig. 12. Simulation spatial frequency response: actuator voltage—beam deflection[m=V ] (open loop).

Fig. 13. Simulation spatial frequency response: actuator voltage—beam deflection[m=V ] (closed loop).

path never crosses the negative real axis. The experiment gives a
gain margin of 19.5 dB at 41.7 Hz, and a phase margin of
at 72.6 Hz. These results demonstrate a sufficient robustness for
our controller.

Our controller was designed to minimize the spatialnorm
of the closed-loop system. To show the controller effect on the
frequency response of deflection over the entire beam, we have
also plotted the spatial frequency responses of the beam.

Figs. 12 and 13 compare the spatial frequency responses of
the uncontrolled and controlled beam using the simulation re-
sults. The location is measured from one end of the beam,
which is closer to the patches, while the frequency response is in

terms of the beam’s transverse deflection (deflection in-axis,
see Fig. 1). The resonant responses of modes 2 and 3 have been
reduced because of the controller action.

Next, a Polytec PSV-300 Laser Scanning Vibrometer was
used to obtain the experimental frequency response of the
beam’s vibration at a number of points along the beam. The
results allow us to plot the spatial frequency responses of
the uncontrolled and controlled beam from the experiments
as shown in Figs. 14 and 15, respectively. Our experiment
confirms the simulation results, where we obtain vibration
reduction for modes 2 and 3 over the entire structure. The
experiments show that the resonant responses of modes 2 and
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Fig. 14. Experimental spatial frequency response: actuator voltage—beam deflection[m=V ] (open loop).

Fig. 15. Experimental spatial frequency response: actuator voltage—beam deflection[m=V ] (closed loop).

3 have been reduced by around 20 and 15 dB respectively, over
the entire beam.

VIII. C ONCLUSION

A class of resonant controllers has been introduced in this
paper. These controllers can be applied to structures which
contain compatible pairs of collocated actuators and sensors.
The controller reduces resonant responses of the structure by
increasing the system damping at those resonant frequencies.
Passivity of the system guarantees closed-loop stability in the
presence of uncontrolled high-frequency modes and inaccurate

structural models. The controller damping factors are chosen
such that the spatial norm of the closed-loop system is
minimized. It is observed that such a controller results in
suppression of the transverse deflection of the entire structure.
The experiment presented shows the effectiveness of the
developed controller in reducing the structural vibrations on a
piezoelectric laminate beam.
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