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Fig. 4 Sail steering angles (——, cone angle, – – –, clock angle).

For a large number of trajectory segments, the transfer time is ex-
tremely close to the true minimum time, as expected.However, for a
small number of segments there is only a modest penalty, as shown
in Table 1. For example, using four � xed-sail attitudes during the
entire trajectory the transfer time is increased by only 10 days. The
trajectory obtained is shown in Fig. 1 while the steering angles are
shown in Fig. 2. It can be seen that for a larger number of segments
the steering law closely matches that obtained from the Pontryagin
principle.

This approach can now be extended to rendezvous trajectories.
For illustration a three-dimensional Earth–Mars transfer problem
will be considered. A launch date of 13 May 1986 is chosen to
allowcomparisonwith theexistinganalysisofSauer.2 The minimum
transfer time obtained from the Pontryagin principle is found to
be 355.7 days. Again using sequential quadratic programming to
minimize the transfer time while enforcing the boundaryconditions
as constraints, the transfer time using � xed steering angles is found
to be 365.0 days for N = 5. For N = 10 the transfer time is reduced
slightly to 362.0 days. The three-dimensionalrendezvoustrajectory
to Mars capture obtained with N = 5 is shown in Fig. 3, whereas
the sail steering angles are shown in Fig. 4. For three-dimensional
transfers the sail clock angle is also required,de� ned to be the angle
between the north ecliptic pole and a projection of the sail normal
onto a plane normal to the sun line. Again, the ease of implementing
only � ve � xed steeringangles, rather than continuouslytracking the
trueminimum-time steeringangles,will more than offset the modest
increase in transfer time.

IV. Conclusions
An investigation has been conducted into near minimum-time

solar-sail trajectories.Using the observationthat the cost functionof
the problemis rather � at means that near minimum-time trajectories
can be obtained using only simple steering laws. Although these
steering laws incur a modest penalty in transfer time, they are likely
to provide signi� cant operational bene� ts, particularly for future
highly autonomous missions. Because solar sails do not require
reactionmass, absolute trajectoryoptimizationis of less importance
than for other low-thrust spacecraft.
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I. Introduction

T HE modal analysis technique1 has been extensively used
throughoutthe literature to model dynamics of distributedsys-

tems such as � exiblebeams and plates, slewingbeams, piezoelectric
laminate beams, and acoustic ducts. Dynamics of such systems are
described by partial differential equations (PDEs). In the modal
analysis approach, the solution of these PDEs is allowed to consist
of an in� nite number of terms. Moreover, these terms are chosen
to be orthogonal. Hence, modeling of a system based on a modal
analysisapproachcan result in an in� nite-dimensionalmodel of that
system.

In controldesign problems,one is often interestedonly in design-
ing a controller for a particular frequency range. In these situations,
it is common practice to remove the modes that correspond to fre-
quencies that lie out of the bandwidth of interest and only keep the
modes that directly contribute to the low-frequencydynamics of the
system. Often two or more out-of-bandwidth modes may also be
kept to improve the in-bandwidth model of the structure.

It is known that truncation has the potential to perturb the in-
bandwidth zeros of the system. This problem is addressed in Ref. 2
and was recently revisited in Refs. 3 and 4. The mode accelera-
tion method (see Ref. 2 page 350, and also Ref. 3) is concerned
with capturing the effect of higher-frequency modes on the low-
frequencydynamics of the system by adding a zero-frequencyterm
to the truncated model to account for the compliance of the ignored
modes. In Ref. 5, this problem is approached from an optimization
perspective, where the DC content of the truncated model is modi-
� ed to minimize the 2 norm of the error system that results from
the truncation. In this paper, we concentrate on the sampled-data
models of structures that are obtained by placing a sample and hold
in the input of the system. We allow for a zero-frequency term to
capture the effect of truncated modes and � nd this constant term
such that the 2 norm of the resulting error system is minimized.

To this end, we point out that there are alternative methods to
the modal analysis approach for modeling of distributed systems.
However, the modal models have the interesting property that they
describe spatial and temporal behavior of a system. Such models
can then be used in designing spatial controllers as noted in Refs. 6
and 7.

II. Model Correction
Dynamicsof a largenumberofdistributedsystemssuchas � exible

beams, plates, and acoustic enclosures are governed by particular
PDEs. Very often modal analysis is used, to solve these PDEs.1

Whenmodalanalysisis used,a PDE can be shown to be equivalentto
an in� nite number of decoupled second-order,ordinary differential
equations as

q̈i (t ) + x 2
i qi (t ) = Fi u(t ), i = 1, 2, . . . (1)

where u(t ) is the input of the system and qi , i = 1, 2, . . . , are the
modal coordinates.Moreover, the input–output equation of the sys-
tem in terms of a transfer function can be shown to be

G(s, r ) =
1

i = 1

u i (r )Fi

s2 + x 2
i

(2)
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where u i (r ), i = 1, 2, . . . , are mode shapes of the system. We are
mainly concerned with pointwise models of structures. For con-
troller designpurposes, thesemodels are often truncatedby keeping
the � rst N modes that lie within the bandwidth of interest. Trunca-
tion is known to perturb the in-bandwidth zeros of the system. In
particular in the collocated case, when the actuator and sensor are
located in the same position, this effect is easily observable.

Let us consider a structural model de� ned by

G(s) =
1

i = 1

Fi

s2 + x 2
i

(3)

To implement a controller, a sample and hold circuit is placed
at the input to the system. This is to ensure that the system can be
controlled via a computer. A sampled-data model of this system is
determined by

G(z) =
1 ¡ e ¡ T s

s
£

1

i = 1

Fi

s2 + x 2
i

(4)

where {F (s)} is the z transform of F (s) and T is the sampling
time. It can be shown that

G(z) =
1

i=1

Fi (1 ¡ cos x i T )

x 2
i

£
z + 1

z2 ¡ 2 cos x i T z + 1
(5)

In a typical controllerdesign scenario, this model is then approx-
imated by G N (z) by keeping the � rst N modes of Eq. (5) and a
controller is designed based on the truncated model. That is,

G N (z) =
N

i = 1

Fi (1 ¡ cos x i T )

x 2
i

£
z + 1

z2 ¡ 2 cos x i T z + 1
(6)

The assumption that is made in truncation is that only the � rst
N modes are of importance as far as the low-frequency dynamics
of the structure is concerned. The fact is, however, that truncated
modes do contribute to the low-frequency dynamics of the system.
In particular, the DC contributionof the truncated modes is

1

i = N + 1

Fi

x 2
i

(7)

This error manifests itself in the form of perturbed zeros. One
could attempt to reduce this error by adding Eq. (7) to the truncated
model (6). This problem was addressed by Clark3 for continuous-
time models of structures and a similar model correction technique
was proposed (see also Ref. 8). Note that for sampled-data models
a similar result can be obtained. This is because sampling does not
alter the DC behavior of a system.

The problem that we wish to address in this paper is to � nd a
model correction term K such that the corrected truncated model

Ĝ N (s) =
N

i = 1

Fi (1 ¡ cos x i T )

x 2
i

£
z + 1

z2 ¡ 2 cos x i T z + 1
+ K (8)

is as close to Eq. (5) as possible in an 2 sense. This is equivalent
to � nding a K that minimizes the following cost function:

k W (z)(G(z) ¡ Ĝ N (z))k 2
2 (9)

where W (z) is an ideal low-pass � lter with a cutoff frequencyof x c

and

k f (z)k 2
2 =

1

2p

p

¡ p

f ¤ (e j x ) f (e j x ) d x

The cost function (9) can be written in the form

W (z)
1

i = N + 1

G i (z) ¡ K

2

2

(10)

where

G i (z) =
Fi (1 ¡ cos x i T )

x 2
i

£
z + 1

z2 ¡ 2 cos x i T z + 1
, i = 1, 2, . . .

Let us de� ne

Ḡ(z) =
1

i = N + 1

G i (z) (11)

Then the cost function (10) can be expanded as

k W (z)(Ḡ(z) ¡ K )k 2
2 = k W (z)Ḡ(z)k 2

2 ¡ h W (z)Ḡ(z),

W (z)K i ¡ h W (z)K , W (z)Ḡ(z) i + k W (z)K k 2
2

where

h f, g i =
1

2p

p

¡ p

f ¤ (e j x )g(e j x ) dx

It can be veri� ed that the K that minimizes Eq. (10) is given by

Kopt =
h ḠW , W i + h W , ḠW i

2k W k 2
2

(12)

That is,

Kopt =
1

2 x c

x c T

¡ x c T

{Ḡ(e j x ) + Ḡ ¤ (e j x )} d x

=
1

2 x c

x c T

¡ x c T

1

i = N + 1

Fi (1 ¡ cos x i T )

x 2
i

e j x + 1
e j2x ¡ 2 cos( x i T )e j x + 1

+
e ¡ j x + 1

e ¡ j2 x ¡ 2 cos( x i T )e ¡ j x + 1
d x

=
1

2 x c

x c T

¡ x c T

1

i = N + 1

Fi (1 ¡ cos x i T )

x 2
i

£
1 + cos x

cos x ¡ cos x i T
dx

(13)

After straightforward,but tedious,manipulations,this expression
for Kopt can be simpli� ed to

Kopt =
1

i = N + 1

Fi (1 ¡ cos x i T )

x 2
i

1 +
1

2 x i T
cot

x i T

2

£ tan ( x i T / 2) + tan ( x cT /2)

tan ( x i T / 2) ¡ tan ( x cT /2)
(14)

We notice that, for large values of x i , the argument of the sum in
(14) approaches zero. Therefore, to compute a reasonably accurate
value for Kopt, one only needs to evaluatethe sum for a largenumber
of terms.

To this end, we point out that the preceding analysis does not
consider the effect of modal damping. However, the correctionterm
given in Eq. (14) should work well if a small amount of damp-
ing is allowed in model (3). The example in the next section illus-
trates this point. Therefore, this method should work � ne for lightly
damped systems. For a stiff structure the preceding analysis may
have to be redone to allow for damping explicitly in model (3).
In that case, one may need to perform the entire procedure nu-
merically because � nding an analytical solution may prove to be
too tedious.
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III. Illustrative Example
In this section,we applythe approximationmechanismdeveloped

in Sec. II to a simple � exible structure. The structure consists of a
� exible beam that is pinned at its both ends.The beam is assumed to
be subject to a point force at the pointr1 and a displacementsensor is
assumed to be placed at r2. Parameters of the beam are beam length
L = 1.3 m, actuator location r1 = 0.075 m, sensor location r2 = r1,
q A = 0.6265 kg/m, and E I = 5.329 Nm2 , where E , I , A, and q are,
respectively, Young’s modulus, moment of inertia, cross-sectional
area, and the linear mass density of the beam.

Here, we assume that the system input is a point force applied
at position r1 and that the output is the displacement measured at

Fig. 1 Comparison of the frequency responses of the 30-mode sampled-data model of the beam with its 2-mode sampled-data model.

Fig. 2 Comparison of the frequency responses of the 30-mode sampled-data model of the beam with its corrected 2-mode sampled-data model.

position r . The transfer function between applied force u and the
elastic de� ection of the beam can be shown to be

ŷ(s, r )
U (s)

=
1

i = 1

u i (r1 ) u i (r )

(s2 + x 2
i )

(15)

For thepinned–pinnedbeamsystem, themode functionsaregiven
by1

u i (r ) = (2/ q AL ) sin(i p r / L ) (16)

and the correspondingnatural frequencies are
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x i = (i p / L )2 E I / q A

This systemconsistsof an in� nite numberof modes, and it describes
the elastic de� ection of the entire beam due to a point force applied
at r1. Because the actuator and the sensor are located at the same
position, this is a collocated system.

In this example, we assume that the system is sampled at a rate
of T = 0.1 ms. Moreover, we assume that all of the modes have
a damping ratio of 0.3%. In Fig. 1, we compare the frequency re-
sponse of the two-mode sampled-data model of the beam and the
model based on the � rst 30 modes. Note that truncation has con-
siderably perturbed the zeros of the two-mode truncated model. In
Fig. 2, we plot the corrected version of the two-mode system based
on the procedure developed in the Sec. II, that is using Eq. (14).
The correction term, Kopt captures the effect of modes 3–30 on
the two-mode dynamics of the system in a 2 optimal sense. Note
that the corrected2-mode system approximatesthe 30-mode system
reasonably well in the frequency range of interest.

IV. Conclusions
In this paper we looked at the problem of model correction for

sampled data models of � exible structures.The problemof � nding a
feed-throughterm to compensate for the effect of truncated higher-
frequency modes on in-bandwidth dynamics of the system was set
up as an 2 optimizationproblem and an analytical solution to this
problem was obtained.
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