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Abstract

Modal analysis has been used in modeling of a large number of physical systems such as beams, plates, acoustic enclosures, strings,
etc. These models are often simpli"ed by truncating higher frequency terms that lie out of the bandwidth of interest. Truncation can
introduce a large error. This paper suggests a method of minimizing the e!ect of truncated modes on spatial low-frequency dynamics
of the system by adding a spatial zero frequency term to the truncated model. The feed-through term is found such that the spatial
H

�
norm of the error system is minimized. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The modal analysis technique has been widely used
throughout the literature to model the dynamics of spa-
tio-temporal systems such as #exible beams and plates
(Meirovitch, 1986), slewing beams (Fraser & Daniel,
1991; Book & Hastings, 1987), piezoelectric laminate
beams (Alberts & Colvin, 1991) and acoustic enclosures
(Hong et al., 1996). These systems have the common
property that dynamics of each one of them is described
by a particular partial di!erential equation. The modal
analysis is concerned with expanding the solution of this
partial di!erential equation in the form of an in"nite series
using the eigenvalues and eigenfunctions of the system.
The control designer is often only interested in devis-

ing a controller for a particular bandwidth. As a result, it
is common practice to remove the modes which corres-
pond to frequencies that lie out of the bandwidth of
interest. The removed modes, however, do contribute to

the low-frequency dynamics of the system. If the trun-
cated model is then used to design a controller which is
implemented on the system, say in the laboratory, the
closed loop performance of the system can be consider-
ably di!erent from the theoretical predictions. This is
mainly due to the fact that although the poles of the
truncated system are at the correct frequencies, the zeros
can be far away from where they should be. Therefore, it is
natural to expect that a controller designed for the trun-
cated system, may not perform well when implemented on
the real system since the closed loop performance of the
system is largely dictated by the open loop zeros.
This issue is addressed in Clark (1997) and a model

correction technique is presented which results in
a model that is closer to the real system than the trun-
cated model. The technique of (Clark, 1997), however,
applies only to SISO models and is not aimed at correct-
ing the spatio-temporal characteristics of the system. In
Moheimani (1999, 2000b) anH

�
optimal model correc-

tion technique is proposed that applies to multivariable
models of spatio-temporal systems. In Zhu and Alberts
(1998), the truncation error is reduced via adding a syn-
thetic out-of bandwidth mode to the truncated model
and minimizing a similar cost function. All of these tech-
niques are limited to correcting point-wise models of
such systems. In Moheimani (2000a), this methodology is
extended to allow for model correction of multi-input
models of spatio-temporal systems while minimizing
a spatialH

�
norm of the error system. In this paper, we
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follow a similar procedure. However, our measure of
performance is now the spatialH

�
norm.

2. Modal approach to modeling

In this section, we review the mathematical basis upon
which a class of spatio-temporal systems can be modeled.
We consider a partial di!erential equation described by

L�y(t, r)�#M�
��y(t, r)

�t� �"f (t, r). (1)

Here, r is de"ned over a domain R, L is a linear homo-
geneous di!erential operator of order 2p, M is a linear
homogeneous di!erential operator of order 2s, s)p and
f (t, r) is the system input, which could be spatially distrib-
uted overR. Notice thatM andL are spatial operators.
An example is given in Section 5 that explains how these
operators may be constructed for a particular system.
For more examples the reader is referred to (Meirovitch,
1986). Corresponding to this partial di!erential equation
are the following boundary conditions:

Bl�y(t, r)�"0, l"1,2,2, p. (2)

These boundary conditions are to be satis"ed at every
point of the boundary S of the domain R. Here,
Bl , l"1,2,2, p are linear di!erential operators of or-
ders ranging from 0 to 2p!1. We notice that (1) and (2)
describe spatial and temporal behavior of y. It is our
intention to explain how a model of y can be derived that
captures the spatial and temporal characteristics of (1)
and (2). The modal analysis is concerned with seeking
a solution for (1) in the form

y(t, r)"
�
�
���

�
�
(r)q

�
(t). (3)

Here �
�
( ) ) are the eigenfunctions that are obtained by

solving the eigenvalue problem associated with (1). That
is, �

�
(r) obeys the PDE equation,L��

�
(r)�"�

�
M��

�
(r)�

and its associated boundary conditions, Bl���
(r)�"0,

l"1,2,2, p, i"1,2,2 . The solution of the eigenvalue
problem consists of an in"nite set of eigenvalues
�
�
, i"1,2,2 and associated eigenfunctions �

�
(r). As-

suming that the operator L is self-adjoint and positive
de"nite, all the eigenvalues will be positive and can be
ordered so that �

�
)�

�
)2 . Moreover, the eigen-

values are related to the natural frequencies of the system
via �

�
"��

�
, i"1,2,2 .

In the modal analysis literature, �
�
's are often referred

to as mode shapes. Since L is self-adjoint, the mode
shapes possess the orthogonality property and are nor-
malized via the following orthogonality conditions:

�R�
�
(r)L��

�
(r)�dr"�

��
��

�
, (4)

�R�
�
(r)M��

�
(r)�dr"�

��
, (5)

where �
��
is the Kronecker delta function, i.e., �

��
"1 for

i"j, and zero otherwise. To this end we point out that
the expansion theorem (Meirovitch, 1986) states that
series (3) will converge to the solution of (1) at every time
and at every point in the domain R (Young, 1988).
Substituting (3) in (1), we obtain

L�
�
�
���

�
�
(r)q

�
(t)�#M�

��
�t�

�
�
���

�
�
(r)q

�
(t)�"f (t, r). (6)

Multiplying both sides of (6) by �
�
(r), integrating over the

domain R and taking advantage of the orthogonality
conditions (4) and (5), we obtain an in"nite number of
decoupled second order ordinary di!erential equations:

qK
�
(t)#��

�
q
�
(t)"Q

�
(t), i"1,2,2, (7)

where Q
�
(t)"�R�

�
(r) f (t, r) dr. In many cases, Q

�
(t) can be

written as Q
�
(t)"F

�
u(t) where u(t) is the input of the

system. That is, f (t, r) can be decomposed into its spatial
and temporal components. This is true for all physical
systems of interest to us. A beam with a point force
(Meirovitch, 1986), a plate with a piezoelectric actuator
(Alberts & Colvin, 1991) and a #exible robotic arm (Book
& Hastings, 1987) are examples of systems that satisfy
this condition. Taking the Laplace transform of (7), we
obtain the input}output equation of the system in terms
of a transfer function:

G(s, r)"
�
�
���

�
�
(r)F

�
s�#��

�

. (8)

In Section 5, we will explain how this procedure can be
applied to a physical system, namely, a simply supported
#exible beam.

3. Spatial norms

In the previous section we showed that modeling of
spatio-temporal systems of form (1) using the modal
analysis approach results in models of form (8) where
r belongs to a known set, i.e., r3R. Moreover, the ortho-
gonality condition (5) can often be reduced to

�R�
�
(r)�

�
(r) dr"��

�
�
��
. (9)

This is true for a large number of systems. For instance,
beam- and plate-like structures with uniform mass distri-
bution, acoustic enclosures with uniform cross section
and uniform strings satisfy this condition. It can be ob-
served that (8) consists of an in"nite number of ortho-
gonal modes. Moreover, G describes spatial as well as
spectral behavior of the system.
In this section, we develop the mathematical machin-

ery that is needed in proving our main results in the next
section. To this end, we consider a system of the form
G(s, r) that maps an input signal w(t)3R� to an output
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signal z(t, r)3Rl�R. It can be observed that the system is
allowed to have a number of inputs, as well as a number
of outputs each spatially distributed over the set R. Such
a system can be constructed by augmenting a number of
systems, whose dynamics were studied in the previous
section, to form a multi-input system. This issue will be
further clari"ed in the sequel.
We will need the following de"nitions:

De5nition (SpatialH
�
norm of a signal). Consider a sig-

nal z(t, r)3Rl�R. Then, the spatial H
�

norm of z is
de"ned as

�z��
�
"�

�

�
�Rz(t, r)�z(t, r) dr dt. (10)

Remark. The spatial H
�
norm of z(t, r) can be inter-

preted as the total energy of the signal z.

De5nition (Spatial H
�
norm of a system). Consider

a system G(s, r) with r3R. The spatial H
�
norm of this

system is de"ned as

�G(s, r)��
�
"

1

2	 �
�

��
�Rtr�G( j�, r)HG( j�, r)�drd�,

(11)

where tr�M� is the trace of matrix M and MH is the
complex conjugate transpose of the matrix M.

Remark. For a single input, single output system, such
as a beam with a single point force, �G(s, r)��

�
is

a measure of the volume underneath the surface de"ned
by 
G( j�, r)
�. Hence, this is a natural extension of the
standardH

�
norm of linear systems to systems of form

(8). Similar interpretations can be made for transfer func-
tions of plates, etc.

De5nition (Spatial induced norm of a system). Let G be
the linear operator which maps the inputs of G(s, r) to its
outputs. The spatial induced norm of G is de"ned as

�G��" sup
��w�L�	���


�z��
�



w

�
�

. (12)

De5nition (Spatial H
�
norm of a system). Consider

a system G(s, r). The spatial H
�

norm of this system is
de"ned as

�G��
�

"sup
��R

�
�����RG( j�, r)HG( j�, r) dr�. (13)

The following theorem proves that the spatialH
�
norm

of G(s, r) is indeed equivalent to its spatial induced
norm of G.

Theorem 1. Suppose a stable linear system has a transfer
function matrix G(s, r) and let G denote the linear map it

induces from the L
�
spaces of its inputs to its inxnite-

dimensional outputs. Its induced operator norm �G�
satisxes

�G�"�G�
�
.

Proof. A proof can be found in Moheimani and Heath
(2000).

4. Model correction

Consider the spatio-temporal system (8) and its corre-
sponding orthogonality condition (9). In a typical control
design scenario, the designer is often interested only in
designing a controller for a particular bandwidth. There-
fore, an approximate model of the system is needed that
best represents the dynamics of the system in the pre-
scribed frequency range. In other words, a lower order
dynamical model is needed. A simple-minded choice in
this case is simply to ignore the modes which correspond
to the frequencies that lie outside the bandwidth of inter-
est. For instance, if �

�
is equivalent or larger than the

highest frequency of interest, one may choose to approx-
imate G(s, r) by G

�
(s, r)"��

���
F

�
�(r)/(s�#��

�
). This

seems to be the mainstream approach in simplifying the
dynamics of this class of systems (Clark, 1997). A draw-
back of this approximation is that the truncated higher
order modes may contribute to the low-frequency dy-
namics, mainly in the form of distorting zero locations.
Furthermore, these removed modes can signi"cantly dis-
tort the spatial characteristics of the low-order model.
Therefore, an approximate low-order model is needed
that best captures the e!ect of truncated modes on the
spectral (hence temporal) and spatial dynamics of the
system.
To see how truncation can perturb low-frequency dy-

namics, we look at the error system generated by ap-
proximating the full order system with the truncated
model, i.e., ��

�����
F

�
�(r)/(s�#��

�
). At DC this amounts

to a spatial error of k(r)"��
�����

F
�
�

�
(r)/��

�
. This could

introduce a signi"cant amount of error. Therefore, it is
sensible to expect that this error can be reduced if k(r) is
added to the truncated model. In the aeroelasticity litera-
ture this technique is referred to as the mode acceleration
method (see Bisplingho! & Ashley, 1962, p. 350).
To this end, we wish to generalize our approach to

allow for multi-input multi-output transfer functions. We
consider transfer function matrices of the form

G(s, r)"
�
�
���

�
�
(r)

s�#��
�

H
�
. (14)

Here, H
�
is a row matrix, i.e., H

�
"[f �

�
f �
� 2 f �

�
] where

m is the number of actuators, and each vector f �
�
is made

up of l terms corresponding to the number of outputs.
This requires the assumption that each output can be
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Fig. 1. A simply supported beam with m point forces.

modeled with the same set of eigenfunctions (a typical
example would be where both position and acceleration
are measured across R). Moreover, the �

�
's satisfy the

orthogonality condition (9). As a single output example,
for the simply supported beam of Fig. 1 which is subject
to m point forces at r

�
,2, r

�
, this amounts to f�

�
"�

�
(r
�
)

for s"1,2,2,m where �
�
(r) and �

�
are given by (28)

and (5).
A truncated version of (14) is

G
�
(s, r)"

�
�
���

�
�
(r)

s�#��
�

H
�
. (15)

Our approach to reducing the truncation error is to add
a feed-through term K(r) to G

�
(s, r) such that the spatial

H
�
norm of the error system is minimized. Our model

correction technique is based on approximating (14) with

GK (s, r)"G
�
(s, r)#K(r), (16)

where K(r)"��
�����

�
�
(r)K

�
and K

�
"[k�

�
k�
� 2 k�

�
].

Moreover, we intend to determine the K
�
's in a way

that the following cost function is minimized:

J"�=(s, r)(G(s, r)!GK (s, r))��
�
, (17)

whereG andGK are de"ned as in (14) and (16), and=(s, r)
is an ideal low-pass weighting function distributed spa-
tially over R with its cut-o! frequency �

�
chosen to lie

within the interval �
�
3(�

�
,�

���
). That is,


=( j�, r)
"�
1!�

�
)�)�

�
, r3R,

0, elsewhere.
(18)

We notice that G(s, r)!GK (s, r) has no resonant poles in
the frequency range of 0)�)�

�
. Therefore, the cost

function (17) will be "nite.
It turns out (under some mild assumptions) that the

cost function (17) is minimized by setting

K(r)"
�
�

�����

�
�
(r)K��	

�
(19)

with

K��	
�

"

1

2�
1

��
�

#

1

��
�
!��

�
�H�
. (20)

To see this we "rst require three lemmas. In the "rst we
show we can exploit orthogonality to express the cost
function as the supremum over a closed frequency range
of the maximum eigenvalue of a sum of error terms:

Lemma 4.1. Dexne the m�m matrix

E
�
(�,K

�
)"��

� �
1

��
�
!��

H
�
!K

��
�
�

1

��
�
!��

H
�
!K

��.
(21)

Then the cost function J in (17) can be written as

J" sup
���
�
��

�
����

�
�

�����

E
�
(�,K

�
)�. (22)

Proof. Applying the de"nition of the spatial H
�
norm

(13) we may say

J"sup
��R

�
�����R 
=( j�, r)
�(G( j�, r)!GK ( j�, r))H

�(G( j�, r)!GK ( j�, r)) dr�.
From the de"nition of the weighting function=( j�, r) in
(18) this reduces to

J" sup
���
�
��

�
�����R(G( j�, r)!GK ( j�, r))H

�(G( j�, r)!GK ( j�, r)) dr�.
But

�R (G( j�, r)!GK ( j�, r))H(G( j�, r)!GK ( j�, r)) dr

"�R�
�
�

�����

�
�
(r)�

1

��
�
!��

H
�
!K

���
�

��
�
�

�����

�
�
(r)�

1

��
�
!��

H
�
!K

��� dr
"

�
�

�����

��
� �

1

��
�
!��

H
�
!K

��
�
�

1

��
�
!��

H
�
!K

��
"

�
�

�����

E
�
(�,K

�
).

Hence the result. �

In our second lemma we consider the structure of each
term E

�
(�,K

�
). In particular we consider its structure

over all frequencies !�
�
)�)�

�
when we set

K
�
"K��	

�
with K��	

�
de"ned by (20). We also consider its

structure over all K
�
at frequencies �"0 and �"�

�
.

We also show that each K��	
�
minimizes the cost function

J
�
" sup

���
�
��

�
���
[E

�
(�,K

�
)]

Lemma 4.2. With E
�
(�,K

�
) dexned by (21) and for

K��	
�

dexned by (20), then for any column vector x and for
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any K
�
we can say

(1) E
�
(0, K��	

�
)"E

�
(�

�
, K��	

�
)"�

�
��

�
(H �

�
H

�
) (1/��

�
!1/

(��
�
!��

�
))�,

(2) x�E
�
(�,K��	

�
)x)x�E

�
(0,K��	

�
)x for !�

�
)�)�

�
,

(3) x�E
�
(0,K��	

�
)x)max[x�E

�
(0,K

�
)x,x�E

�
(�

�
,K

�
)x].

Furthermore,

(4) each term K��	
�

dexned by (20) satisxes
K��	

�
"arg inf

K
�

max
���
�
��

�
���
[E

�
(�,K

�
)].

Proof. A proof is included in the appendix. �

In our third lemma we consider summing terms.
De"neK

�
as the set

K
�

"�K
���
,K

���
,2,K���

�

with K��	
�

"�K��	
���
,K��	

���
,2,K��	

���
�. De"ne also

S
�
(�,K

�
)"����

�����
E

�
(�,K

�
) and the cost

JM
�
(K

�
)" sup

���
�
��

�
���
[S

�
(�,K

�
)]. (23)

We show that the cost JM
�
(K

�
) is optimised atK��	

�
. In

particular we show that S
�
(�,K

�
) has the same proper-

ties we showed for each term E
�
(�,K

�
) in Lemma 4.2.

Lemma 4.3. For allM, for any column vector x and for any
K

�
we can say

(1) S
�
(0,K��	

�
)"S

�
(�

�
,K��	

�
)"�

�
����

�����
��

�
(H �

�
H

�
)

(1/��
�
!1/(��

�
!��

�
))�,

(2) x�S
�
(�,K��	

�
)x)x�S

�
(0,K��	

�
)x for !�

�
)�)�

�
,

(3) x �S
�
( 0 ,K ��	

�
) x)max [ x � S

�
( 0 ,K

�
) x , x �S

�
(�

�
,K

�
)x].

Furthermore,

(4) the cost JM
�
(K

�
) is minimised at K

�
"K��	

�
.

Proof.

(1) This follows immediately from Lemma 4.2.
(2) By induction:
Suppose the result is true forM. Then by supposition
and from Lemma 4.2

x�S
���
(�,K��	

���
)x"x�S

�
(�,K��	

�
)x

#x�E
�����

(�,K��	
�����

)x

)x�S
�
(0,K��	

�
)x

#x�E
�����

(0,K��	
�����

)x

"x�S
���
(0,K��	

���
)x.

But we also know from Lemma 4.2 that the result is
true for M"1.

(3) Following the same reasoning as for the proof of part
(3) of Lemma 4.2 we "nd that if both

x�S
�
(0,K

�
)x(x�E

�
(0,K��	

�
)x

and

x�S
�
(�

�
,K

�
)x(x�S

�
(0,K��	

�
)x

then

���
�

�����

2��
� �
1

2�
1

��
�

#

1

��
�
#��

�
�H�

x!K
�
x�

�
(0

which cannot be true.
(4) This is straightforward, following the same reasoning
as part (4) of Lemma 4.2. �

We can now state our main result, which follows
immediately:

Theorem 2. Assume we have lim
�	�

(J!JM
�
)"0

with JM
�

dexned in (23) and evaluated at any
K

�
"�K

���
,K

���
,2,K���

�, and J dexned in (17) and
evaluated at K(r)"����

�����
�
�
(r)K

�
. Also assume that

lim
�	�

		
�
�

�������

�
�
(r)K��	

� 


�

�

"0.

Then the cost J in (17) is minimized by taking
K(r)"��

�����
�
�
(r)K��	

�
.

Remark. The assumptions in Theorem 2 are mild. For
example, a su$cient condition for the "rst assumption is
that for any K

�

lim
�	�

		=(s, r)
�
�

�������

�
�
(r)

s�#��
�

H
�



�

�

"0.

We "nd

		=(s, r)
�
�

�������

�
�
(r)

s�#��
�

H
�



�

�

" sup
���
�
��

�
�����R�

�
�

�������

�
�
(r)

��
�
!��

H
���

��
�
�

�������

�
�
(r)

��
�
!��

H
��dr�

" sup
���
�
��

�
����

�
�

�������

��
� �

1

��
�
!���

�
H�

�
H

��
)�

1

��
�
!��

�
�

�
�
����

�
�

�������

��
�
H�

�
H

��.
Thus it is su$cient for the "rst assumption either that the
H

�
's are bounded and there is a "nite minimum
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Fig. 2. A simply supported #exible beam.

separation between all resonant frequencies �
�
(above an

arbitrarily chosen high bandwidth), or that the H
�
's tend

to zero su$ciently fast. It is straightforward to show that
such conditions are also su$cient for our second
assumption to be valid.
These conditions are easy to check on a case-by-case

basis for such applications as #exible beams and plates
and acoustic ducts and enclosures. These systems are of
particular interest to us. In this context, we note (Hughes,
1987) that the utmost high-order modes are an arti"cial
construct of the modelling process; we should expect
them to have a vanishing e!ect on the low-frequency
behavior.

Observation. A direct implication of Theorem (2) is that
if our model correction technique is applied to each
individual transfer function, the resulting corrected
multi-input system will be optimal in the sense of (17).
This means that the result can be applied to each transfer
function term by term and similarly to each mode on
a term by term basis.

5. Illustrative example

In this section, we apply the model correction method
which was developed in the previous section to a simply
supported single-input single-output beam model. Dy-
namics of this system satis"es (1) and (2). Hence, modal
analysis can be employed to obtain a model of this
system.
Consider a simply supported beam as depicted in

Fig. 2. Here, y(t, r) denotes the elastic deformation
of the beam as measured from the rest position.
The elastic de#ection y(t, r) is governed by the
classical Bernoulli}Euler beam equation (Meirovitch,
1986)

��
�r��EI

��y(t, r)
�r� �#�A

��y(t, r)
�t�

"u(t)�(r!r
�
), (24)

where E, I, A, u(t)�(r!r
�
) and � represent Young's

modulus, moment of inertia, cross-section area, external
force applied at r

�
, and the linear mass density of the

beam, respectively.

Pinned}pinned beam boundary conditions are

y(t, 0)"0, y(t,¸)"0,

EI
��y(t, r)

�r� �

��

"0, EI
��y(t, r)

�r� �

��

"0. (25)

The "rst two boundary conditions state that there are no
movements at the two ends of the beam and the second
two conditions state that the beam curvatures at both
ends are zero.
Comparing (24) and (25) with (1) and(2), we notice that

L"

d�

dr��EI
d�

dr��, M"�A,

B
�
"1, B

�
"EI

d�

dr�
, f (t, r)"u(t)�(r!r

�
).

Assuming a solution of form (3) and following the pro-
cedure that was explained earlier, we can "nd a transfer
function of form (8) for this system. The eigenfunctions
are chosen to be orthogonal according to the condition

�
�

�

�
�
(r)�

�
(r)�Adr"�

��
. (26)

The transfer function between applied force ;(s) and the
elastic de#ection of the beam y( (s, r) is given by (Krishnan
& Vidyasagar, 1987)

y( (s, r)

;(s)
"

�
�
���

�
�
(r
�
)�

�
(r)

(s�#��
�
)
. (27)

For the pinned}pinned beam system in Fig. 2 the mode
functions are given by (Meirovitch, 1986)

�
�
(r)"�

2

�A¸

sin�
i	r
¸ � (28)

and the corresponding natural frequencies are

�
�
"(i	/¸)��EI/�A. The parameters of the beam are:

¸"beam length"1.3 m; r
�
"0.05 m; �A"0.6265 kg

/m; EI"5.329 N m�. Moreover, in our simulations we
allow for a damping ratio of 0.3% for all the modes.
In this example, we are interested in demonstrating the

e!ectiveness of our model correction methodology ap-
plied to the truncated model of the beam. In Fig. 3, we
compare frequency responses of the 30 mode model of
the beam with that of the truncated 2 mode model and
the corrected 2 mode model by adding the optimal feed-
through term as explained in previous sections. It is
assumed that the "rst 30 modes of the beam represent the
dynamics reasonably accurately within the bandwidth of
interest. The plots correspond to four distinct points
along the beam. It can be observed that as a result of the
truncation, the zeros are considerably displaced. How-
ever, after the optimal feed-through term is added to the
truncated 2 mode model, the zeros are moved much
closer to their expected locations.
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Fig. 3. Comparison of point-wise frequency responses of the beam at four distinct points, &*' 30 mode model, &- . -' 2 mode model, &- -' corrected 2 mode
model.

6. Conclusion

In this paper, we introduced a class of spatio-temporal
systems and their corresponding model correction prob-
lem. We explained that in the modal analysis approach,
the solution of the partial di!erential equation that de-
scribes the dynamics of the system is expanded in the
form of an in"nite series. For controller design purposes
this series is approximated by a "nite-dimensional system
via truncation. We explained that the truncation could
introduce a signi"cant error. We proposed that this error
could be reduced if a feed-through term is added to the
model of the system. Moreover, we demonstrated how
this term could be found such that spatial and temporal
characteristics of the system are best preserved within the
bandwidth of interest as measured by a spatial

H
�
norm. We demonstrated that a spatially distributed

feed-through term can capture the e!ect of truncated
modes, and showed how this can be constructed on
a term by term basis. Finally, we showed how this ap-
proach would apply to a physical system.

Appendix

Proof of Lemma 4.2.

(1) This follows from simple calculation.
(2) We can evaluate

E
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��
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�
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�
.
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So
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since the terms (1/(��
�
!��)!1/��

�
) and

(1/(��
�
!��)!1/(��

�
!��

�
)) have opposite signs.

(3) By reductio ad absurdum:
Suppose we have both

x�E
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)x
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Evaluating the expressions we "nd both
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Adding we "nd
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Substituting for K��	
�
from (20) gives
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which cannot be true.

(4) The maximum eigenvalue is given by
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From part (2) of Lemma 4.2 we see that
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But similarly from part (3), for any K
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