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Abstract

Saturating actuators are present in all real control systems. Their effect on system performance clearly depends on the range of control
action required relative to the saturation bounds. Much of the prior work on this topic has centred on how to switch linear controllers so
as to avoid saturation occurring. This, however, has meant that the full input authority has not been exploited in the control law. Recently,
two alternative methods have been proposed for switching linear controllers so as to force the input into saturation. They achieve this
goal by scaling the controls or by allowing over-saturation in the switching scheme. In this paper the two methods are combined into a
more general scheme. It is also shown that the combined scheme is capable of achieving superior performance. A robust version of the
algorithm is also described which is applicable to a class of uncertain systems. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The phenomenon of input saturation is one of the more
common non-linearities encountered in control system ap-
plications. The presence of saturation imposes fundamental
limits on the achievable performance. In some situations, the
demands on the control amplitude are such that saturation
is never encountered. However, there are other cases where
the performance demands are such that the input needs be
pushed to the available limits so as to make best use of the
available control authority. In this context, there has been
recent interest in the use of logic-based switching controllers
for dealing with linear systems with input saturation. Sys-
tems composed of logic-based controllers, together with the
processes they are intended to control, are concrete exam-
ples of hybrid systems. A number of analytical studies of
hybrid systems has emerged in the last decade. For exam-
ple, a tutorial on hybrid systems stability can be found in
Branicky (1997).
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Methods that employ controller switching to deal with
input constraints have been proposed in, for example,
Tan (1992), Wredenhagen and Bélanger (1994) and
Kolmanovsky and Gilbert (1996). A common feature of
these controllers is that the saturation levels are avoided.
Thus, the resulting controllers are, relatively, ‘low gain’
controllers. Recently, it has been independently recognised
in Lin, Pachter, Banda, and Shamash (1997) and in De
Dona, Moheimani, Goodwin, and Feuer (1999) that this
strategy is conservative and that the performance of these
kinds of systems can be improved by forcing the controls
into saturation. Both, Lin et al. (1997) and De Dona et al.
(1999), constitute alternative methods that modify the basic
scheme of Wredenhagen and Bélanger (1994) in order to
achieve this goal. They do so by, respectively, scaling the
controller gains and by allowing over-saturation.

In this paper we examine each of the above designs and
show that they can be combined into a more general scheme.
We show that a judicious combination of the core ideas in the
above schemes (i.e., switching, over-saturation and scaling)
provides superior performance compared to the case where
each is used separately.

2. Piecewise-linear LQ control

Several contributions reported in the literature (Tan,
1992; Wredenhagen & Bélanger, 1994; Ledwich, 1995;
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Kolmanovsky & Gilbert, 1996; Lin et al., 1997; De Dona
et al., 1999) indicate that, in the presence of input con-
straints, it is beneficial to have a number of different pre-
computed gains Kj,K>,...,Ky, in a sequence related to
improved performance and to select, via a switching strat-
egy, the more appropriate one according to the operating
condition. A seminal idea in the design of switching con-
trollers having guaranteed stability, is the piecewise-linear
LQ control (PLC) algorithm which appeared originally in
Wredenhagen and Bélanger (1994). The PLC control strat-
egy is based on LQ theory and the associated switching
surfaces are positively invariant sets given by nested el-
lipsoids (a non-empty set & C R” is positively invariant
if for a dynamical system and for any initial condition
x(ty) €&, then x(¢)e & for all ¢t > #y). A key idea in the
PLC controller is that, in each switching region, a linear
controller is selected such that the constraints imposed by
saturation are not violated. In the sequel, we will briefly
expand on the main ideas used in the PLC controller
approach.

Consider a general nth order linear dynamical system sub-
ject to input saturation
X(t) = Ax(t) + Bsatj(u(t)), x(to)=x0€Z CR", (1)
where x € R” is the state, u € R is the control input, and the
pair (4, B) is assumed to be stabilisable. We assume full state
measurement, and the input saturation function sat ; : R” —

R™, for the vector of saturation bounds 4 = (A41,...,4,), 1
defined by
sat j(u) 2 [saty, (1), sat s, (u2), .., sata, (un)]', (2)

where each sat, () function is defined by saty (u;) £
sgn(u;) X min {|u;|, 4;}.

The PLC controller design starts with a sequence {p; }¥ ,
of N design parameters such that p; > p, > --- > py >0,
and an n X n design matrix Q > 0. Then, for each p; and
matrix O, we form a diagonal matrix R,-:diag(rl-l, r,-z, ey ),
where rl:/ >0, j=1,2,...,m. The choices of the sequence
{p:}., and the construction of the corresponding diagonal
matrices R; are explained later. For each R;, compute P; and
K; such that

0=PA+A"P, — PBR'B"P;, + 0, (3)

K; =R 'B"P,, (4)

where P; is the positive definite solution of the algebraic
Riccati equation (3) for the optimal LQ problem and
the gain K; is such that u(z) = —K;x(¢) minimises the
cost

+o00
J(x0) = / [ (O0x(0) + 1" (ORu(0)] di 5)

fo

when x(#) satisfies (1) without saturation.

The switching surfaces are ellipsoids defined by
&i=6Ei(Prpi) & {x:x"Pix < pi}, (6)

which can be shown, by simple Lyapunov analysis, to be
positively invariant sets for system (1) under the control
u(t) = —K;x(t), where P; and K; are solutions of (3) and
(4) for a given R;. In Corollary 3.1 below, we will present a
proof of the invariance of the ellipsoids &; in a more general
setting. The elements of R; =diag(r},7?,...,7") are chosen,

for a given p;, to be the largest such that

1
beP,X
e

1

lu;| = <(1+B]‘)Aja Vx € 8i(Pi, pi), (7

j=1,2,...,m, where u; is the jth element of u, and b; is the
jth column of matrix B. The constants ﬁ_j, j=12,....m
are included here for later reference, but it is important
to realise that, in the PLC controller, they are: BJ- =0,
j =1,2,...,m. The existence and uniqueness of such
R; = diag(r},7?,...,r™) are established in Wredenhagen
and Bélanger (1994), and an iterative algorithm for their
computation is provided, together with a proof of its
convergence.

The procedure used to choose the design parameters p;,
i=1,2,...,N,is as follows: Given a set of initial conditions
Z C R", choose p; > 0 such that Z C &,(Py, p1), where
Py is computed from (3) with R; such that (7) is satisfied
(with, in the case of the PLC controller, Bj =0, j=1,...,m).
The rest of the p; are chosen as successively smaller real
numbers such that p; > p; > -+ > py > 0. As pointed out
in Wredenhagen and Bélanger (1994), the choice of the
parameters p; and the number of ellipsoids N requires some
experimentation and the exact location of each of the &;, in
order to optimise the performance, remains an open question.

In Wredenhagen and Bélanger (1994) it is also proven
that the ellipsoids in the sequence {&;}Y , are nested,
ie. &1 C &, for each i = 1,2,...,N — 1. This nesting
property allows us to perform a partitioning of the state
space region contained into the biggest ellipsoid in N cells:
{%;}Y | defined as: €;=&\& 11, fori=1,2,...,N — 1, and
%n=¢&y. The PLC controller is then defined by the switching
strategy:

u=—-Kx forxe%;, i=12,...,N. (8)

As can be deduced from (8), the controller does not
cover the whole state space R”. However, for stable and
quasi-stable open loop plants, it is possible to cover all of R”
whilst maintaining closed loop stability by letting p; — oo
(Wredenhagen & Bélanger, 1994). For unstable plants, the
ellipsoids tend to a limiting ellipsoid and hence it is impos-
sible to cover all of R". The proof that system (1) with PLC
control (8) is asymptotically stable for all x € &, is a direct
consequence of the ellipsoids &; being positively invariant.
Since this proof is contained as a special case of Theorem
3.2 below, it will not be presented here. (See Remark 3.2.)
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3. PLC control with allowed over-saturation

A distinctive feature of the PLC controller reviewed in
the previous section is that, in order to ensure that the input
constraints are avoided, the scheme yields a relatively ‘low
gain’ controller. In fact, this method is conservative since, by
taking ﬁ_j =0, j=1,2,...,min (7), the control is away from
the saturation level ‘almost everywhere’. Here we present a
switching strategy based on the PLC design which allows
some prescribed level of over-saturation /3 ;> 0, thus pro-
viding better utilisation of the full power of the available
control authority. By the term ‘over-saturation’, we mean
a situation in which a controller initially demands an input
level greater than the available range followed by trunca-
tion via a simple saturation operation. In this section we
concentrate on providing stability results for the resulting
PLC control including allowed over-saturation. Simulation
examples, presented later, show that it is always benefi-
cial, in terms of improved performance, to allow for some
level of over-saturation. In order to measure the magnitude
of control saturation, an over-saturation index is defined as
follows.

Definition 3.1. Given a saturation function saty,(-) and a
scalar control signal u;(¢#) we define a function f;(¢) as

u;(¢) — sat,(ui(t)) _
st () 0O ©)
0 for u;(t) = 0.

Bi(t) =

Clearly, p;(t) = 0 whenever u;(¢) is not saturated, and
Pi(t) is the relative value of the demanded control with
respect to the saturation bound A4; when u;(t) is saturated.
The over-saturation index is then defined as a constant f;
such that the allowed supremum of the control signal is

1Bi(D) |0 < B;-

The design of the over-saturated law follows as for the
PLC controller explained in Section 2, with the only differ-
ence being that, in (7), some level of over-saturation is al-
lowed. Specifically, the elements of R; = diag(r},7?,...,7")
are chosen, for a given p;, to be the largest values such
that (7) is satisfied with over-saturation index f3; > 0 for
the control u; and saturation bound 4, as defined in Defini-
tion 3.1. Notice that the existence and uniqueness of such a
sequence R; = diag(r},7?,...,7") can, again, be established
using the results of Wredenhagen and Bélanger (1994) since
the control constraints are arbitrary. Thus, the same algo-
rithms can be used for computing R; as in standard PLC
control.

Given system (1), we assume:
Assumption 3.1. The pair (4, B) is stabilizable.

Assumption 3.2. The design matrix Q in (3) is positive
definite, denoted as Q > 0.

Assumption 3.1 is a necessary condition for the exis-
tence of a unique positive definite solution to the ARE
(3). Assumption 3.2 is a design choice that will be re-
laxed later. We prove, in the following theorem, that the
stability of the PLC switching scheme is retained when
some level of over-saturation is allowed; namely, we allow
over-saturation, for each element u; of the control vector u,
up to

= . 4/min(Q) ,
«J;= min 1+ —— =1,2,...,m,

[Bima ]] =l N\/ (Z;nzl ril)kij(kij)T J
(10)

where ki'i is the jth row of matrix K;, and Ay, (Q) is the min-
imum eigenvalue of matrix Q. Notice that, by Assumption
32, [Prmax]; > 1 forall j=1,2,....m.

Theorem 3.1. The system (1) (subject to Assumption
3.1) having PLC controller (8) computed under Assump-
tion 3.2 with allowed over-saturation 0 < Bj < [Emax]j,
j=12,...,m, is asymptotically stable for all x € &, (i.e.
in the outermost ellipsoid considered).

Proof. Given the hybrid nature of the control system (1),
(8), in the sense that continuous states (x(¢#)) and discrete
states (related to the switching strategy) are present, we
choose a piecewise quadratic candidate Lyapunov function
of the form:

V(ix)=x"Px forxe%, i=1,2,...,N. (11)

From (1) and (8), we see that the time derivative of the
Lyapunov function inside cell € is

V(x) = [Ax + Bsat ;(—Kx)]" Px
+x"P;[Ax + Bsat ;(—Kx)]
=x"(A"P; + PiA)x + [sat;(—Kx)]' BT Pix

+x"P;B [sat ;(—Kx)]

m
=—x"0x+ Y r/ |uj|llu;| — 2satg, (Ju;])] (12)
j=1

for x€®;, i = 1,2,...,N, where the last equality follows
from (3) and the definitions of the sat ;(-) function in (2)
and the diagonal matrix R; = diag(ril,rl-z, ...,7"). Here, we
have denoted, by u;, the jth element of u = —Kx, i.e.

1 ‘

uj = ——b; Pix = —k/x. (13)
T

By the construction of &}, it can be readily seen from (7) that

il < A+ B4, <A+ [Bax] )4, VXEG; C &
(14)

for j=1,2,...,m, where [B,,,]; > 1 is given by (10).

max]
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We will next consider the general case where 0 # x € 4 is
such that |u; | < 24, for j; in a subsequence j; € { ji, j2, ..
Jp}rand 24; < |u;| < (1+ [ﬁmax )4, for j; in the com-
plementary subsequence j; € {; pH, Jp+2s--sjm}, Where
0< p<m, and {ji,j2.-.jp} U {Jprtsipizse-osim} =

{],2,...,”’1}, {jl:jZ""’jp} N {jp+lajp+29"'ajm} = w
Then, by the Cauchy—Schwarz inequality we obtain

up,|* = kx| > 442, s=p+1p+2,...m
T —4A12\
:>—XX<W, S=p+1,p+2,...,m
- /s 442
= —x'x < — Z ’i Js (15)

s= p+1(Zl p+1 r”)k}s(kjc)—r

and saty, (|u;|)=4;,s=p+1Lp+2...,
V(x) in (12) can be majorized as

m. Therefore,

14
V) <Y rug || - )

s=1

£

s=p+1

[u]s 2|uls‘AJs

Amin(0) 42 ] (16)

o p1 ijl )kij‘v (kijs )3

for 0 £ x € €;.

Since |u;,| < 24;, for s =1,2,..., p, we obtain that the
terms between square brackets in the first summation in (16)
satisfy

|uj,| — 2satg, (Ju;[) <O fors=1,2,....p. (17)

It is easy to see that the quadratic terms between square
brackets in the second summation in (16) are non-positive
if and only if

4/1min(Q)
<|1+,/1+ — L 4, (18
< \/ (Zl:[H»l rijl)kijs(kij.s )T) J )

s=p+1,p+2,...,

|uj,

m. This is, in turn, true since, from the

construction of &; we have |u; | < (1 + [Bmax]js)A ;. for all
Jjs€4{1,2,...,m}, and
B 4/min(Q)
[ﬁmax]j < + mll;/ i 7 T 0 < p < m.
(St 7 G
(19)

Therefore we see that, under the assumptions of the theorem,
we have

V(ix) <0 for0#x€%;, i=1,...,N. (20)

We conclude that the trajectories in each cell 4; approach the
origin with a monotonic decrease in V' along the trajectory.
Since the ellipsoids are nested and all contain the origin, this

means that the trajectories will cross the cell boundaries as
they approach the origin. Finally, the trajectories will enter
the smallest ellipsoid corresponding to py, where asymptotic
convergence to the origin is assured by (20). [

Corollary 3.1. The ellipsoids &; 2 {x:x"Px < p;} are
positively invariant sets for system (1) under the control
u(t)=—K;x(t), i.e., for any initial condition xy =x(ty) such
that x§ Pixo < pi, then for all t = to,x(¢)"Pix(t) < p;, where
x(t) is the solution of (1), with control u(t) = —K;x(t).

Proof. To establish this fact, note that for any x(#) along a
trajectory that satisfies x(¢)TPix(¢) < p;, inequality (20) is
satisfied. This means that the trajectories will never leave
the ellipsoid &; £ {x:x"Px < p;}. O

Remark 3.1. Note that the inequality (20) also eliminates
the possibility of chattering when switching at the bound-
aries V' (x) = xTP;x = p;, since all the trajectories will head
away from the boundaries as they approach the origin
(Wredenhagen & Bélanger, 1994).

Notice that it is not possible to know [Bmax]j, j=1,...,m,
beforehand since the design starts with the allowed
over-saturation indices f; and with them, and the ellip-
soids radii p;, we determine the diagonal matrices R; as the
largest values such that (7) is fulfilled. The R; matrices, in
turn, determine [ﬁ_max] in (10). Therefore, the stability con-

ditions of Theorem 3.1, i.c. ﬂ [[)’max] ;, must be checked
after the design has been carrled out. In all cases, stability
can be guaranteed, under the assumptions of Theorem 3.1
(Theorem 3.2 below), by choosing Bj <1 (,Ej < 1),
j=1,...,m. In the cases where it is desirable to maximise
the degree of allowed over-saturation, it could be required
to perform some experimentation in the selection of ;. This
is not problematic since the calculations are done off-line
during the design. Also, in the scalar-input case, the design
procedure can be slightly modified (in a similar form as
done in Example 5.1 below) in such a way that [Emax] can be
computed before the selection of the over-saturation index.

We will now replace Assumption 3.2 by the following:

Assumption 3.3. The design matrix Q in (3) is non-negative
definite, denoted as Q > 0. We also make the standard as-
sumption in linear quadratic optimal control that the pair
(4, D) is completely observable, where D is any matrix such
that DDT = O (see, e.g., Anderson & Moore, 1989).

Notice that, from this assumption, we have in (10) that
[ﬁmax]j =1, for all j = 1,2,...,m. We then have the
following theorem.

Theorem 3.2. The system (1), subject to Assumption
3.1, with PLC controller (8) computed under Assump-
tion 3.3 and having allowed over-saturation 0 < ﬁ <1,
j=1,2,...,m, is asymptotically stable for all x € &.
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Proof. The procedure is similar to that used in the proof of
Theorem 3.1. We choose a Lyapunov function as in (11) and
get the time derivative V(x) as in (12). By the construction
of &;, we have from (7) that

luj| < (14 B))4; <24;, Vx€%: C 6 (21)
for j=1,2,...,m. Hence, in (12) we obtain
luj| — 2saty (Ju;|) <0 for 0#x €%, (22)

for j=1,2,...,m.

Since Q is non-negative definite, certainly ¥ is
non-positive, but to conclude asymptotic stability we must
show that V' is not identically zero along trajectories other
than the trivial trajectory, x(¢#) = 0. Let us examine this
condition. In order to have ¥ (x) =0 in (12) we must have:

x(1)TOx(t) =0 (23)
and
|t |(Juj| — 2 satg,(|u;])) =0, (24)

j=1,2,...,m. Condition (23) is equivalent to
D x(¢) =0, (25)

where D is any matrix such that DDT = Q.

From (22), we have that condition (24) is equiva-
lent to |u;] = 0, for j = 1,2,...,m, which means that
the trajectory, x(¢), is the free response of the system.
Hence, by taking successive derivatives of (25) we get
[DA™D .- (4")"~'D]"x(¢) = 0, and by Assumption 3.3,
we have that x(¢) must be x(¢) = 0. Therefore, V(x) < 0
for 0#x€%;, i = 1,...,N, and we conclude, as in
Theorem 3.1, that the system is asymptotically stable. []

Remark 3.2. Note that, the above proof covers system
(1) having the standard PLC controller of Wredenhagen
and Bélanger (1994). This is simply a particular case of
Theorem 3.2, when ﬁ_j =0for;j=12,...,m.

Example 3.1. In this example, we compare the proposed
switching controller (8) having allowed over-saturation
p >0 with the standard PLC controller presented in
Wredenhagen and Bélanger (1994). For this purpose, we
consider the system given in Example 1 of Wredenhagen
and Bélanger (1994), i.e. a simple pendulum having state
space description

o [0 1

gl {—10 0}
with initial condition (0,0) = (54°,20° s~!) and saturation
bound 4 = 5. In Wredenhagen and Bélanger (1994, Exam-
ple 1), a PLC controller consisting of 6 gains computed
for Q =L« and p; =7.07, p; = pl(Ap)(i_l), i=2,...,6,
with a radius reduction factor of Ap = 1/2, is used. For
comparison purposes, we have used the same gains as

+ sat () (26)

0

1

1

_ €)
o L 4
& 051 ) — PLC/OS
[} \ —_
L oL PLC
< L
-05

0 2 4 6 8 10
1
3 . (b)
g of
< — PLC/OS
T ) { [--pc
5 M
& -2tV

0 2 4 6 8 10

‘ (©

2 — PLC/OS
3
e --PLC
n

4 6 8 10
time (sec)

Fig. 1. Comparison of PLC control and PLC with allowed over-saturation
(PLC/OS).

in Wredenhagen and Bélanger (1994, Example 1), and
considered a controller having allowed over-saturation
equal to the maximum over-saturation index allowed by
Theorem 3.1, i.e., f= [Bmax], where [Bmax] =2.1191 is com-
puted from (10). In Fig. 1 we show the results obtained with
the PLC of Wredenhagen and Beélanger (1994, Example
1), and the results obtained with a PLC with the maximum
allowed over-saturation f§ = [ﬁmax] =2.1191 (PLC/OS). In
Fig. 1 (a) and (b) it can be seen that the PLC/OS has a
faster response compared with the standard PLC controller.
Fig. 1(c) shows the controls of both schemes. Note that
the PLC/OS stays saturated at —5 during approximately
0.5 s, whereas the PLC avoids saturation via switching. In
Wredenhagen and Bélanger (1994), the performance mea-
sure used for comparison between the PLC controller
and fixed gain controllers is defined as the state energy
cost

+o00
wap= [ oo @)
to
which is a function of the radius reduction factor Ap of
the ellipsoids and of the number of switching regions N.
The cost obtained in Wredenhagen and Bélanger (1994)
with the fixed initial gain K; = [0.1118 1.5724] is J; =
3.2664, whereas with a PLC of 6 switched gains the cost is
J6(0.5)=2.3907. With the maximum allowed over-saturation
p= [Bmax], the cost is J(0.5) = 1.5233. For comparison, we
have also computed the cost with allowed over-saturation
of f = 0.4. In this case the cost is Js(0.5) = 1.9118. In
Fig. 2, we show the state trajectories in the phase plane for
the fixed gain control (K; = [0.1118 1.5724]), for the stan-
dard PLC control, for the PLC/OS control with § = 0.4,
and for the PLC/OS control with = [f,,,.]=2.1191. Also
shown are the switching cells &; for the PLC controller. (In
the case of the controllers with allowed over-saturation the
switching cells are bigger than the ones shown.) We have
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Angular Velocity (rad/s)
o

-3F

L L L L L L L L L L L
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Angle (rad)

Fig. 2. State trajectories in phase plane for the simple pendulum. Solid:
p=2.1191. Dotted: f=0.4. Dash-dot: =0 (standard PLC). Dashed: fixed
gain K. Also shown: switching cells (dotted) and unit circle (solid).

also included the unit circle (surface of all initial conditions
in the example considered in Wredenhagen & Bélanger,
1994).

4. PLC combined with low- and high-gain feedback
control

In Lin et al. (1997), the authors have proposed an alter-
native modification of the PLC scheme aimed at obtain-
ing a better utilisation of the available control authority.
Lin et al. (1997) present a combination of the PLC con-
troller and the low- and high-gain control (LHG) (see, e.g.,
Lin, 1998), aimed at rejecting input-additive disturbances
and making the design robust to input-additive uncertainties
in the context of actuator rate-saturation. The model, with
actuator rate-saturation, is transformed via pre-feedback,
into a model with position-saturation and the PLC and
LHG techniques are then applied. In order to recast this
scheme within the framework of Sections 2 and 3, we will
present the simpler case, namely nominal model subject to
position-saturation.

Given a system as in (1), the design starts with the PLC
controller presented in Section 2. Then, to each of the control
laws (8) a ‘high gain’ component is incorporated by multi-
plying the gains with a scaling factor (1 + k) with k£ > 0.
Thus, the combined PLC/LHG control law is

i=—(1+kKx forxe%;, i=12,....N, (28)

where & > 0 is a design parameter.

In Theorem 3.1 of Lin et al. (1997) it is proved that
there exists a k* > 0 such that the system with control (28)
is asymptotically stable and is ultimately bounded in the
presence of disturbances for all £ > £*. In particular, sta-
bility can be proven in the absence of disturbances, Vk > 0

by using a piecewise quadratic Lyapunov function as has
been done in Theorem 3.2 above. In Lin et al. (1997) the
case O = I,x, is considered, in the next lemma we assume,
more generally, that O > 0. The proof of the lemma fol-
lows closely that of Theorem 3.2 and the result in Lin et al.
(1997).

Lemma 4.1. The system (1) (subject to Assumption 3.1)
having PLC/LHG controller (28) computed under
Assumption 3.1 with k > 0, is asymptotically stable for all
X E 8.

It is argued in Lin et al. (1997) that the PLC/LHG con-
troller inherits the advantages of both, the standard PLC and
LHG techniques, while avoiding their disadvantages. In par-
ticular, within the PLC framework, increasing the feedback
gain in a piecewise fashion as the trajectories converge to-
wards the origin, results in fast transient speed for all states.
Moreover, the LHG design, by providing a high-gain com-
ponent, provides good utilisation of the available actuator
authority and speeds up the transient response. It is shown in
Lin et al. (1997) that, both the degree of disturbance rejec-
tion and the tolerance to actuator inaccuracies, are increased
by increasing the value of the design parameter k. In prac-
tise however, k cannot be increased arbitrarily without in-
voking undesirable characteristics. For example, the LHG
design, in common with all high-gain feedback laws, has
an inherent sensitivity to measurement noise (see, €.g., Lin,
1998). Furthermore, as k increases, the saturation function
sat4((1+k)K;x) approximates a relay function 4 x sgn(K;x)
(see, e.g., Johansson, Rantzer, & Astrom, 1999). Hence, var-
ious phenomena associated with relay feedback systems are
likely to become important, e.g., fast switching behaviour,
limit cycles, and chattering modes in the vicinity of the
zero error region (see e.g., Johansson et al., 1999; Ledwich,
1995).

5. Combining PLC with over-saturation and scaling

Sections 3 and 4 have discussed two ideas for improving
the performance of the PLC scheme. These schemes modify
the basic PLC structure, (i) by allowing over-saturation in
the switching algorithm, by which we mean extending each
linear control up to regions beyond the constraints levels,
and; (ii) by adding, to each linear control, a high-gain com-
ponent, achieved via a scaling operation. In both cases it
has been shown that the system retains asymptotic stability.
The natural question is then, which of the above methods is
more beneficial. Up to the present, there is no definite an-
swer to this question, since many factors are involved. On
the one hand, the performance of the standard PLC (and, as
a consequence, those of (i) and (ii)) is not fully understood,
i.e. the choice of design parameters (p; €R, i=1,2,...,N,
and Q € R"*") in order to optimise the performance is an
open problem (see, Wredenhagen & Bélanger, 1994). On the
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other hand, the comparison of methods (i) and (ii) depends
on initial conditions, that is, for some initial conditions one
method may give better performance and vice versa. How-
ever, simulation results presented below show that a syn-
thesis of both methods yields performance improvements
in virtually all cases. This is illustrated in Example 5.1
below.

In this section we explore the combination of the
PLC controller with both, allowed over-saturation and a
high-gain scaling component. We will first show that the
combined controller guarantees asymptotic stability. This is
a straightforward consequence of the results in Sections 3
and 4.

Lemma 5.1. The system (1) (subject to Assumption
3.1) with PLC/LHG controller (28) computed under
Assumption 3.2 (Assumption 3.3) with k >0 and with
allowed over-saturation 0 < B; < [Bal; (0<B; <1),
j=12,...,m, is asymptotically stable with &, contained
in its domain of attraction. ([ I;>1 is defined
in (10).)

max

Proof. Choose the Lyapunov function (11) whose time
derivative V(x) for x€e%; C &;, i =1,2,...,N, is given
by

Vx)=—x"0x+ > rlu|llus] — 2sats,((1+ k)],

J=1

(29)

where u; are given by (13).

Let us consider first the case of Assumption 3.2. Assume
lu; | <24, for j; in a subsequence js € {ji1,j2,..../p} C
{1,2,...,m}, and 24; < |u; | < (1 + [Byay];, )4, for j; in
the complementary subsequence js € {j 41,/ p2s---sim} C
{1,2,...,m}. A similar analysis to that used in the proof of
Theorem 3.1 gives that ¥/ (x) can be majorised as:

P
V) <Y rug|uy,| = 2sata, (1 +6)lu;,

s=1

m .
+ > [u./;lz = 2lu;,

s=p+1

]

4;,

' 2
4/me(Q)Aj5 ‘| (30)

(len:erl rijl )kijs (kijs )"

for 0#x€%,. Since |u;| <24; for s =1,2,...,p, we
obtain that [|u; | — 2saty, ((1 + k)|u;[)] <0, Vk >0, for
each s = 1,2,..., p. Ale, from (19) and the fact that
luj,| < (1 + [Braxl; )4y, for all jo€{1,2,...,m}, we have
that the quadratic terms between square brackets in the
second summation are non-positive. We conclude, as in
Theorem 3.1, that the system is asymptotically stable. Fi-
nally, the case of Assumption 3.3 follows essentially as in
the proof of Theorem 3.2. [J

Example 5.1. In this example we explore to what extent
the performance can be improved by combining the PLC
controller with over-saturation and with a high-gain scaling
component. Consider the system G(s)=1/s (s+0.01) subject
to input saturation with saturation bound 4 = 1, and with
the following state-space realisation:

AEE

The output is desired to track a constant reference » with a
control u= —sat 4(Kx), where the state has been modified by
using a standard technique in order to transform the prob-
lem into a regulation problem (i.e., X; =x; — r, Xo =X —
0.017). We use the switching controller (28), which con-
sists of six gains K7, . .., K¢ computed using (3) and (4) with
O =11 0;0 0] and the following input weights: R; = 5000,
R, =500, R3 =50, R4=5, Rs=0.5, and R; =0.05. Notice that
the design carried out in this example constitutes a slight
modification of the design explained in Section 3. This par-
ticular design, which starts by choosing Ry,...,Rs (instead
of p1,..., pe), simplifies the computations since no iteration
is needed in order to satisfy (7). (However, this variation of
the design can only be performed for the scalar-input case.)
In this case, the ellipsoids radii such that (7) is satisfied are
computed, for a given R;, from

X1

+ satg(u); y=xi.

€29)

X2

(+prPaR;
= BpB i=1,2,....N (32)
In order to guarantee asymptotic stability, we have used
an over-saturation index of up to f = 0.99 to satisfy the
conditions of Lemma 5.1. The asymptotic stability of
the transformed system guarantees reference tracking for
the original system. For comparison purposes we consider
the state energy cost as in Eq. (27) of Example 3.1, i.e. we
consider only the fix component of the design cost (5) (see,
Wredenhagen and Bélanger, 1994). For this particular
problem, and making a transformation into a zero tracking
problem, the cost is given by Jg(k, ﬁ_) = ft:m [x1(2) —r]* de.
The cost Js(k, ) obtained for different values of k and f is
shown in Fig. 3(a)—(c) for three reference values, r =1, 5
and 50, respectively. In the simulations, the scaling factor k&
in (28) was allowed to change from 0 to 40. Beyond these
values, no further improvement in the cost was obtained or
the cost started to deteriorate. The over-saturation index f3
was changed between 0 and 0.99. In Fig. 3 it can be noticed
that some combination of both, scaling and over-saturation,
gives the lowest cost for the three operating conditions con-
sidered (compare with Jg(0,0), i.e. the cost for the standard
PLC). Notice from the figure that a choice of £ = 5 and

f =0.99 gives a good compromise for the three values of r.

In the sequel, we give a heuristic explanation of the effects
of allowing over-saturation and scaling on the performance
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Fig. 3. Cost Js(k, B) for different values of k € [0,40] and € [0,1).

— k1
- - k2

0 0.2 0.4 0.6 0.8 1 1.2 14 16 18 2

Fig. 4. Plot of ‘LZ_/|2 —2|ﬂ,~\sat1((1 +k,‘)‘d_/‘|) Vs. ‘ﬁj|, for ki, ky (k1 < k).

of the PLC controller. For this purpose we use the deriva-
tive of the Lyapunov function as an indicator of the transient
speed of the states (a similar approach has been used, in the
case of the LHG controller, in Lin et al., 1997). In Fig. 4 we
show a normalised plot of the terms appearing in the sum
of the Lyapunov derivative (29), i.e., |i;|* — 2|i |sat;((1 +
ki) |ii;]), as a function of |ii ;| (with ii; £ u;/4;). The effect
of scaling the control input can be appreciated by comparing
the curves for k; and k, (k; > k) in Fig. 4; i.e. the transient
speed for states not in the null-space of BTP; will increase
as the value of k increases (see, Lin et al., 1997). Also, the
effect of allowing over-saturation can be appreciated from
Fig. 4. In the PLC/LHG controller, the switching always oc-
curs when [i;| <1 (i.e. |u;| < 4;). Notice that the switch-
ing at |iZ;| = 1 can only occur at two possible points on the
switching ellipsoid and, thus, for most of the trajectories, the
switching takes place at points where |i ;| < 1; for example,
at points of the state space corresponding to points ‘a’ and
‘b’ in Fig. 4, for k| and k;, respectively. However, it can

be seen in the figure that it is more beneficial to switch at a
higher value of |if ;|, for instance at point ‘c’. The latter is the
case when the controller is allowed to have over-saturation,
which in turn results in bigger ellipsoids leading to larger
values of |ii;| for the same value of x. In fact, even in those
cases where the switching occurs at, or near, |i;| =1 in the
PLC/LHG controller, it is beneficial to allow some level of
over-saturation, since the function ¥ (x) will then take more
negative values during longer periods of time.

6. Robust design

In Section 5 we have shown that two existing ideas used to
improve the performance of the basic PLC design; namely,
over-saturation and scaling, can be combined into a more
general strategy. We have argued that this combination,
when properly chosen, yields performance improvements
as compared to each modification being carried separately.
Example 5.1 illustrates this assertion. We have also shown
that the resulting combined controller guarantees asymp-
totic stability of the closed-loop system. One may ask how
robust is the proposed scheme to plant uncertainties and
how effective in achieving disturbance rejection. Robust
stability in the presence of input-additive uncertainties has
been established in Lin et al. (1997) for the PLC/LHG de-
sign (described in Section 4 above). A similar analysis can
also be performed for the controller presented in Section 5,
namely, the PLC/LHG controller combined with allowed
over-saturation. For plants with uncertainties in the 4-matrix
we have shown in De Dona et al. (1999) that, at least in the
single input case, the design with allowed over-saturation
(Section 3) can be modified to guarantee robust stability,
for an allowed over-saturation of up to 100% (§ < 1). One
can anticipate that such a design could be extended to the
combined controller of Section 5. In this section we will es-
tablish this extension for the case where m = 1, which is
a consequence of the results presented in De Dona et al.



J.A. De Dona et al. | Automatica 38 (2002) 1153-1162 1161

(1999) and in Section 5 above. We will also show that the
allowed over-saturation can be extended beyond 100% with
guaranteed robust stability.

Consider a class of uncertain systems described by

X(1) = (A + DF()E)x(?) + Bsat(u(?)), (33)

where x(¢) € R” is the state, F((z) € R?*? is a matrix of un-
certain parameters satisfying the bound FT(#)F(t) < Iyxgs
and u(t) € R is the control input. We make the following
assumption, (see Definition 2.1 in Petersen, 1987):

Assumption 6.1. System (33), without input saturation, is
quadratically stabilisable.

The robust design starts with a sequence {R;}Y, of N
design parameters such that R; > R, > --- > Ry > 0, and
an n x n design matrix Q > 0. For each R; we consider the
following Riccati equation (see, e.g., Petersen, 1987):

AP, + P,A — P,BR;'B"P;
1
+¢,P;,DD"P; + - E'E+0=0, (34)

where ¢; is a positive constant. Then, for the smallest de-
sign parameter, Ry, we find a constant ¢y such that (34)
has a positive-definite solution, denoted Py. The existence
of an &y such that the ARE has a positive-definite solu-
tion is guaranteed, independently of the choice of O and
Ry, by Assumption 6.1 (see, e.g., Theorem 3.3 in Petersen,
1987). For each of the N — 1 remaining design parame-
ters compute & = ey Ry/R;, and, with the pairs (R;, ¢;) thus
obtained, find the positive-definite solutions to the ARE
(34), P;, for i =1,2,...,N — 1 (the existence of these so-
lutions has been established in De Dona et al., 1999). We
then compute the sequence of gains K; = R;” 'BTP;. The se-
quence of switching ellipsoids &; £ {x:xTPx < p;} is de-
signed such that inequality (7) is satisfied, i.e. the ellipsoids
radii are computed from (32) with over-saturation index
f > 0, which is allowed to be up to [f,,,] (given by (10),
with m = 1).

In De Dona et al. (1999) we have shown that the ellip-
soids {&;} | are nested. This nesting property allows us to
perform a partitioning of the state space region contained
into the biggest ellipsoid in N cells: {%;}Y | defined as:
€ =E\Eiy1,fori=1,2,...,N—1,and €y =&y. The con-
troller is then defined by the switching strategy (28), where
a high gain scaling component (1 + k), k > 0, is included.

In the next lemma we prove the robust stability of this
scheme, which we call robust PLC/LHG with allowed
over-saturation.

Lemma 6.1. The uncertain system (33) (subject to
Assumption 6.1) and controller (28) (computed with the
above robust PLC/LHG design) with k = 0 and with al-
lowed over-saturation 0 < fp < [Bmax] is asymptotically
stable for all x € &,. ([p 1; > 1 is defined by (10), with
m=1.)

max

Proof. Choose a Lyapunov function (11) whose time
derivative V(x) is given by

V(x)=[(4 + DFE)x + Bsat,(—(1 4+ k)K;x)]" Pix
+x'Pi[(4 + DFE)x + Bsats(—(1 + k)K;x)]
=x"[(4 + DFE)'P; + P;(A + DFE)]x
—2x"P;Bsat((1 + k)K; x) (35)

for xe¥;, i =1,...,N. Then, from Claim 1 of Petersen
(1987) we can find the following upper bound for the
Lyapunov derivative:

. 1
V(x) <x' (ATPI- + PiA + ¢,P;,DD"P; + — ETE> x
&i

—2x'PiBsat4((1 + k)K;x)
= —x"Ox + Ry|u|(|u|] — 2sat,((1 + k) [u])) (36)

forxe®;, i=1,...,N, where the last equality follows from
(34) and u=—R; !BTP;x. Notice that the last expression in
(36) is the same as the right-hand side of Eq. (29) (with
m = 1). Therefore, the same argument as in the proof of
Lemma 5.1, for the case of Assumption 3.2, can be used to
establish that the system is asymptotically stable. [

7. Conclusions

This paper has surveyed several ideas that can be used in
the design of switching controllers to achieve high perfor-
mance on linear systems having input saturation. The ideas
evolve from an existing scheme known as the PLC con-
troller. Two alternative ways of modifying the PLC con-
troller have been described. These modifications include
the concept of ‘allowed over-saturation’, and ‘PLC/LHG
design’. Both methods are aimed at forcing the control into
saturation, thus making best use of the available control au-
thority. A novel controller, which combines the above meth-
ods has also been presented. The combined controller has
been shown to lead to performance advantages via a simu-
lation example. Finally, a robust design has been presented.
In all cases, the asymptotic stability of the resulting hy-
brid system has been established. There remain several in-
teresting open research problems in this general area. For
example, we have shown, via simulation, that performance is
improved by the combination of over-saturation and scaling.
It would be interesting to develop a mathematical framework
for expressing this improvement. Also, it would be inter-
esting to extend the robustness results to the multiple-input
case and to other types of uncertainty.
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