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SpatialHs Control of a Piezoelectric Laminate Beam:
Experimental Implementation
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Abstract—The aim of this paper is to design and experimentally not accurate because of the truncation of high-frequency dy-
evaluate the performance of a feedback controller to suppress vi- namics [1]-[4]. This inaccuracy can have negative effect on the
bration of a flexible beam. The controller is designed to minimize closed-loop stability. To fix this problem, feedthrough terms are

the spatial H2 norm of the closed-loop system to ensure average . .
reduction of vibration throughout the entire structure. Vibrations added to the model to correct the locations of the zeros as dis-

of the first six bending modes of the beam are to be controlled Cussed in [1]-[4]. This technique is known in the aeroelasticity
using a collocated piezoelectric actuator-sensor pair attached to the literature as the mode acceleration method [5].

beam. Feedthrough terms are incorporated into the flexible-struc-  To demonstrate the proposed controller, a single-
ture model to correct the locations of the in-bandwidth zeros. It is input—single-output (SISO) spatiat, controller is designed
shown that the spatial5 control has an advantage over the point- . . . . .
wiseH., control in minimizing the vibration of the entire structure.  [OF @ piezoelectric laminate beam to suppress the vibration of
The spatial H» controller minimizes the H, norm of the entire the first six bending modes of the structure. The controller is
structure more uniformly, while the pointwise H controller only  implemented on the structure, a simply-supported beam with a
has a local effect. The implemented spatial{, controlleris able to  cgllocated piezoelectric actuator-sensor pair.

minimize the first six bending m f th m effectively. Thi . . .
spatial 72 c?ont?:)fcagealgo ge a%%?iseg tct) r?lgsaager?ereacltst(rau)(/:turals . Ple_zoelectrlc actuat.ors.and Sensofs have been used in many
vibration suppression problems. V|_brat|on cc.>n.trol apph(_:atlons of 'erX|bIe structures [6]—_[12'].

Index Terms—H- control, flexible structures, intelligent struc- P!ezoelectrlmty was dlscovereq in 1880 _by French SCIem'St.S
tures, piezoelectric transducers, spatialH, norm, vibration con-  Pierre and Paul-Jacques Curie. The piezoelectric effect is
trol. observed in many crystalline materials, which strain when
exposed to a voltage and produce a voltage when strained.
In other words, these materials are capable of transforming
mechanical energy into electrical energy amck versaln the

ANY engineering applications use structures that caxperiments, piezoelectric actuators and sensors are used.
be considered to be flexible. Flexible structures are dis- This paper is organized as follows. Section Il describes the

tributed parameter systems. Therefore, vibration of each podynamics of flexible structures with collocated piezoelectric ac-
is dynamically related to the vibrations of every other point oveénator-sensor pairs. Section |1l describes the notion of spatial
the structure. It is important to design a controller with a view{; norm that is used as a performance measure for flexible
to minimizing structural vibrations of the entire structure, rathestructures. Section IV deals with the model correction to re-
than a limited number of points. This would ensure that struduce the error in the locations of the in-bandwidth zeros of the
tural vibrations of the entire structure is suppressed. model. Section V describes the concept of spatiatontrol for

This paper presents experimental implementation of the cdtexible structures. Section VI discusses the design of a feed-
cept of spatial{> control on a piezoelectric laminate beam foback SISO controller for suppressing the vibration of the first
the first time. The controller is designed such that the spat&ik bending modes of a simply supported piezoelectric laminate
‘H2 norm of the closed-loop system is minimized. Minimizingbeam. Section VIl presents experimental implementation of the
the spatiaf{> norm of the system will ensure vibration suppressontroller on a beam structure. The last section draws conclu-
sion over the entire structure in an average sense. The shatialsions. The modal solution of a simply supported beam is in-
control problem can be solved by finding an equivalent systertuded in Appendix.
representation that allows a stand&td control optimization
problem to be solved instead.

The spatial, control produces a controller with similar II. MODELS OFFLEXIBLE STRUCTURES
dimensions as that of the plant. If a model is developed via
the modal analysis technique, a direct truncation can be used his section briefly explains how a model of a beam with a
to obtain a finite-dimensional model of the system. Howevenumber of collocated piezoelectric actuator-sensor pairs can be
it is known that the locations of the in-bandwidth zeros am@btained using a modal analysis technique. Interested readers

can refer to [8], [9] for more detailed derivations.
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SCRsors The multiple-input—infinite-output (MIIO) transfer function

/7 \ from the applied actuator-voltages(s) to the transverse struc-
§ § ié tural deflectionz(s, z) at locationz is
X

G(s,z) = 5
(5,2) Z 52 +2Ckwks+w,% )
actuators k=1
Z — .
whereV;, = [V41,. .., ¥x]? and the mode number is denoted
Fig. 1. A simply supported beam with a number of collocated piezoelectddy k. ¥; is a function of the location of thih piezoelectric ac-
patches. tuator, the eigenfunctiol’;,(x) and the properties of the struc-

ture and the piezoceramic patch (see [11], [14], and [15]). The

uniform beam properties can be justified. However, approximéamping ratio is denoted hy..

tion methods such as the finite element method can also be useguch models have the interesting property that they describe

to deal with more general nonuniform structures. spatial and spectral properties of the system. The spatial infor-
Suppose there ar&/ collocated actuator-sensor pairs dismation of these models can then be used to design controllers,

tributed over the structure. Piezoelectric patches on one sidéMfich guarantee a certain level of damping for the entire struc-

the beam are used as sensors, while patches on the other sidt/&ge

used as actuators. Voltages that are applied to actuating patchég/rthermore, the multiple-input-multiple-output (MIMO)
are represented b, (t) = [Va1(t), ..., Vaar (0] transfer function of the flexible structure with piezoelectric

A model of the structure can be obtained via the modal an&ctuator-sensor (collocated) pairs can be determined in a
ysis procedure. This procedure requires finding a solution $§milar manner. The transfer function from the applied ac-
the partial differential equation (PDE) which describes the d{dator-voltagesV, (s) to the induced voltages at the sensor
namics of the structure. The governing PDE of a flexible beakh (s) = [Vai(s), -, Vam (s)]" is
is as follows [7], [13]:

N
pr2@t) | e t) Mt ) Gl =1 ; 57+ 2pwps + o ©
ozt PN T e T T o2 -

whereT > 0 is a constant based on the properties of the struc-

where the beam transverse deflection at ppiahd at timet is ture and the piezoceramic patches.

denoted byz(x,t). The deflectionz(x, ¢) is assumed to be in
the form of z(x,t) = > 72, Wi(z)qr(t), whereW,.(z) is the
eigenfunction and,(t) is the time-dependent solution. Algg,
Ay, E, andI represent the density, the cross-sectional area of thel his section presents an overview of the concept of spatial
beam, the Young’s Modulus and the moment of inertia about tfié norm. Consider the transfer function of a flexible structure,
beam’s neutral axis, respectively. The forcing moment acting 6#{s, z), as in (5). This model describes the spatial and spectral
the beam is denoted by/,,,. behavior of the structure. TH&, norm of G(s, x) can be used
The forcing moment on the beam,., is generated by asameasure of performance at a particular paiktowever, it
piezoelectric actuators. A voltag¥,;, which is applied to the cannot be used as a global performance measure for the entire
ith actuator, would produce a forcing momeM;;x structure as itis calculated based on the response at a specific lo-
cation on the structure [6], [16]. To obtain a global performance
M, = K[H (z —z1;) — H(z — 22;)] Vai(t) (2) measure for the entire structure, the notion of spatiainorm
can be used.
whereH (-) is a step function and;, z2; denote theth actu-  The spatial{, norm of the transfer functio#(s, =) is de-
ator’s locations along th& axis. K depends on the propertiesfined [6], [16] as,
of the structure and the piezoelectric patches. Thus, the forcing oo
moment depends on the actuator’s location along the beam ag ¢ >2= i/ / tr{Q(jw, z)*Q(jw, z)} dzdw (7)
well as the applied voltage. 21 Jooo Jx

The PDE can be solved independently for each mode by “SWﬂereX is the set over whick: is defined. For a beary =

the orthogonality properties of_its eigenfunctid®g which are [0, L]. Here,tr {4} represents the trace of the matrixTaking
as follows for the case of a uniform beam: advantage of the orthonormality of the eigenfunctidng,, in

lll. SPATIAL Ho NORM

L (3), it can be shown that
/ Wi ()W, (2)da =85, @3)

0 ) SadTRINNTS

Lpraw, “ «G»3=> e, (®)
/0 A, dat P L =WiOkp =1

. here
wherew;, describes the natural frequency of the beam at moge -
k. Here, 6y, is Kronecker’s delta function, that ig;, = 0 for = wi

all k # p and equals one & = p. Gils) = $2 + 2w, + Wi’ ©
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From definition (7), it can be argued that the spatialnorm IV. MODEL CORRECTION
is a suitable measure of performance for spatially distributed
linear time-invariant systems, such as those described in @é
Furthermore, if the system can be broken into a number of
thonormal modes, then the contribution of each mode to the tof
spatial’{> norm of the system can be determined from (8) ary
(9). Also, since the spatigl, norm of a system of the form (5)

In practice, dynamical models of a flexible structure as de-
fibed in (5) and (6) have to be truncated to represent the system
v a finite-dimensional model. The model can be truncated so
Enclude only the modes within the frequency bandwidth of in-
rest. However, the truncation of the model produces additional
) ) L . / error in the locations of the in-bandwidth zeros. This is due to
Is equivalent to thé{?. norm of a finite-dimensional system, "the fact that the contribution of the out-of-bandwidth modes, i.e.,
can be calculated using st_andard softyvare. high-frequency modes, is generally ignored in the truncation.

. An(_)ther way of calculating the spatiad norm of a system ne way to improve the truncated model dynamics is to in-
Is o first obtain a.sFa.\te—space represgntatlon c.)f th(_a systgm%ﬂ%e feedthrough terms to correct the locations of the in-band-
then to apply definition (7) to determine a finite-dimension idth zeros. This technique is known in the aeroelasticity liter-

system \.NhOSé.{Q horm IS equivalent to the spatiél horm of ature as the mode acceleration method [5] and has been recently
the spatially distributed system. To demonstrate this, SUPPOS.@isited in [1]-[4]

state-space representation of the transfer funatiésn «) can

. Thus, the infinite-dimensional model of the collocated system
be described as

in (6) can be approximated &) _(s)

x(t) =Az(t) + Buw(t) . al T UF
2., t) =Cla)z(t) (10) G =T T

k=1

2 + KVS (16)
k

wherew(t) are external disturbances through the actuators. Nehere N is the number of modes included in the model and
tice that for a vibratory system such as abeagm, ¢) represents Ky, is a M x M matrix added to correct the locations of
the deflection at a particular point, along the structure. Such ain-bandwidth zeros. For a SISO systefy,, will be a scalar.
model can be obtained by truncating the series (5) and keeplFw a general multivariable systef;-, can be found using the
the first/V modes. Then the spati&d, norm of the transfer func- method proposed in [3] and [17]. This is done by determining a
tion G(s, z) can be shown to be equivalent to [6], [16] feedthrough term that minimizes tit¢, norm of the difference
between the infinite-dimensional and the truncated modegls,

< G»3=|G|3 (11)

Ty =[|[Weo(s) (Grva(s) = GY(9))]]5 (17)
> 3.gT

where Ky, — T N In <wk +wco> . a8

R 2L‘Jco E=N1 Wk Wk — Weo

G(s) =I'(sI — A)™'B (12)
and Here,w,, is the cutoff frequency of the ideal low-pass filter,

T T W..(s), which is chosen to lie within the intervabfy, wn1).
"I'= /X C(z)” Cla)dz. (13) Similarly, the approximate spatial transfer functiortfs, x)

in (5) can be described by
Hence, the spatigks norm of G(s, =) can be determined by .
calculating theH, norm of G(s). N X Wi(z) T
In certain problems, it may be necessary to weight the output G5 2) = Z 52 + 2Cws + w?
kWEk k
of G(s, x) in a nonuniform manner. Imagine a situation where
vibration of a particular region on the surface of a flexible strugvhere K (z) is a1 x M vector.K(z) is a function of the spatial
ture is to be damped more heavily. In such a case, the definitiggriable =, which has to be estimated from the modal model of
(7) can be modified to allow for a spatially distributed weightinghe system.
function. Hence, the weighted spatial 2-norn(odis definedto  One possibility is to find a feedthrough term that minimizes
be the weighted spatidt{, norm of the error between the infinite-
dimensional and the truncated models [2]. The tdtifx) is

< G>3 o= = / / tr{G(jw, 2)* Q(x)Gjw, )} drdw. determined such that the following cost function is minimized:
—oo J X

(14) Ji =< Wei(s,z) (G(s,z) — G (s,2)) >3 . (20)
Note that if@(z) is chosen to be a Dirac Delta function, i.e.,
8(x — x1), (14) reduces to Here, W, (s, ) is an ideal low-pass weighting function dis-
tributed spatially oveX with its cutoff frequencyw.;, chosen
) 1 /= A to lie within the interval &, wn41).
LG >36= a /_OO tr {G(Jw) G(J”)} dw (15)  The cost function (20) is minimized by setting [2]

Y K(r)  (19)
k=1

whereG(jw) = G(jw,z1). Hence, definition (14) collapses to K(z) = Z KP'Wy(x) (21)
the H, norm of a finite-dimensional system. kN1
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v TABLE |
Controller
+ PROPERTIES OF THEPIEZOELECTRIC LAMINATE BEAM

K(s)
Beam X-length, L 0.600 m
Beam width, W 0.050 m
Beam thickness, h 0.003 m
Beam Young’s Modulus, E 7.00 x 101° N/m?
Beam density, p 2.770 x 10% kg/m?
Piezoceramic X-length, L, 0.070 m
Piezoceramic Y-length, L,, 0.025 m
Piezoceramic thickness, h, 2.50 x 10~ m
Piezoceramic Young’s Modulus, | 6.70 x 101° N/m?
E,
Charge constant, dg; ~2.10 x 1071 m/V
Voltage constant, gs; -1.15x 1072 Vm/N
Capacitance, C 1.05x 10-7 F
Electromechanical coupling fac- | 0.34
tor, ks

Fig. 3. Experimental apparatus.

where Amplifier  LP Filter
1 e
KOpt In s tw L \I/T- (22) Beam
chlwk W — Wel \
- . - . . '7

Note that in practice only a finite number of modes can be in- v -
cluded in order to calculate the feedthrough tefi{;x). This
should not cause a major problem as the effect of modes will P Fillr dSPACE
diminish with increasing:. l_|—\

V. SPATIAL Hy CONTROL OF A PIEZOELECTRIC LAMINATE

BEAM 2

Signal Analyzer

This section is concerned with the problem of spatalcon-
trol for flexible structures. Consider a typical system of a flex=i9- 4. Experimental setup.
ible structure such as the one shown in Fig. 2. The system con-
sists of only one piezoelectric actuator-sensor pair for the sakelhere is still a difficulty in using feedthrough terms in the
of clarity. Here, the purpose of the controller is to reduce tHerformance outputy(z,¢) (23) since the spatial, norm
effect of disturbancey(t), on the entire structure, using piezo©f the system will not remain finite. To avoid this problem,
electric actuators and sensors. The concept of spasiabntrol  feedthrough terms are replaced with second-order out-of-band-
was introduced in [6], [16] to address problems of this naturewidth terms as suggested in [1]. It has to be ensured that the

A spatially distributed linear time-invariant dynamical systeriecond-order term has a zero-frequency content that is close
such as the beam in Fig. 2 can be defined in its state-space fé@{23). The resonant frequency of the second-order system,

as we, IS set above the bandwidth of interest. Also, a relatively
‘ high damping ratiog.., is used, so that the second-order system
z(t) =Az(t) + Brw(t) + Bou(t) behaves like a low-pass filter.
2(z,t) =01 (2)Z(t) + D1y (2)w(t) + Dio(z)u(t) Thus the modified system is
Vi (t) =Csz(t) + Dayw(t) + Dosult 23 . - -
() =Ca(t) + Dasew(t) + Dazu(t) (23) 500 —A5(t) 4 Buat) + Bault
wherez € R" is the statew € R is the disturbance input, € 2(x,t) =Cy (x)Z(t)
R is the control inputz is the performance output,, € R is V,(t) =Cai(t) + Dorw(t) + Dayu(?) (24)

the measured output. For a flexible structures, ¢) represents

the spatial displacement at timewherez € X. . i L
The system matrices in (23) can be obtained from transfgperex consists of the plant’s original statesand the states

functions (16) and (19). Note that for the system shown in Fig. ue to the extra _second—order term. _ .

Dss = Doy in (23) is the feedthrough teryy, described in Then, the spatigl{, control problem is to design a controller

(16), while D11 (x) = Dio(x) is K(z) in (21). MoreoverB; =

B> since disturbance is assumed to enter the system through the T (t) =Axzr(t) + BiVs(t)

actuator. w(t) =Crap(t) + DiVs(t) (25)
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Fig. 5. Frequency response of the controller (input voltage to output voltage [V/V]).

such that the closed-loop system minimizes the weighted spatialt can be shown, using the method in Section llI, that the

‘H> norm the closed-loop system [6], [16] above problem is equivalent to a standafg control problem
for the following system:
< Tzw 5.2) >50 Ht) =Ai(t) + Brw(t) + Bou(t)
o [ ] i, QLo dodo. - (26) (1) =T(1)
V(1) =Coi(t) + Doyw(t) + Dogu(t) (27)

Here, Q(x) is a spatial weighting function and.,, is the

closed-loop transfer function from to z. The purpose of)(z) whereD,; = D, andI is any matrix that satisfies
is to emphasize the region where the vibration is to be damped . .

more heavily. In this particular applicatiof(z) = 1. In other T = / Cy ()" Cy(z)d. (28)
words, the entire beam is weighted equally. X
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Fig. 6. Simulation and experimental frequency responses (actuator voltage to sensor voltage [V/V]).

Hence, the system in (27) can be solved using a starfdard In practice, one has to make a compromise between the level of
control technique. The spatial. controller can be regarded asvibration reduction and controller gain by choosing a suitable
a controller that reduces structural vibration in an average sense.
Designing aH- controller for the system (27) may result in VI. CONTROLLER DESIGN
a very high gain controller, which may not have the required __ . . : .
yignh g y d This section explains the details of a spaftél controller

robustness properties. This problem can be addressed by intro-'. desianed and imol d imol qf
ducing a weight factory, on the control signal. This can pethat is designed and implemented on a simply supported flex-

achieved by rewriting (27) as ible beam in the Laboratory for Dynamics and Control of Smart
() =A#(t) + Brw(t) + Bou(t)

Structures at the University of Newcastle, Australia. A simply

supported flexible beam with a collocated piezoelectric actu-
3(t) = [F} i) + [0} u(t) ator-sensor pair attached to it is used in the experiments. The
0 r apparatus is mounted on an optical table and is shown in Fig. 3.

V,(t) =Coii(t) + Dojw(t) + Dasu(t). (29) The structure consists of a 60 cm long uniform aluminum beam



HALIM AND MOHEIMANI: SPATIAL ‘H2 CONTROL 539

200 T T T T T T T

: : : : — closed loop :

. : : - —_open loop :
150k .............. .............. ............. ............. .............. ______________ .
jo0k e s e L R R R .

Phase [degree]

-200 L
100 200 300 400 500 600 700
Frequency [Hz]

©

200 ! ! ! T ' T
: : : : .| — closed loop
ML= open loop

150

100 : i L

v
(=]

Phase [degres]
o

1
(]
(=]

-100

-150

-200
100 200 300 400 500 600 700

Frequency [Hz]
(d)

Fig. 6. (Continued) Simulation and experimental frequency responses (actuator voltage to sensor voltage [V/V]).

of a rectangular cross section (50 maB8 mm). The beam is output voltage from the piezoelectric sensor, while the con-
pinned at both ends. A pair of piezoelectric ceramic elementdiisl input voltage applied to the actuating patch.

attached symmetrically to either side of the beam, 50 mm awayin this paper, a SISO controller is designed for the purpose
from one end of the beam. The piezoceramic elements useafrcontrolling only the first six vibration modes of the beam.
the experiment are PIC151 patches. These patches are 5 hhence, the model is truncated to include only the first six
wide, 70 mm long, and 0.25 mm thick. The physical parametdsending modes. The effect of out-of-bandwidth modes has
of PIC151 are given in Table I. A model of the piezoelectric lanto be taken into consideration to correct the locations of the
inate beam is obtained via modal analysis (see the Appendix}bandwidth zeros of the truncated model as discussed in
The equivalent standars control problem described in (29) Section IV. Based on the experimental frequency-response
is used for the proposed spatidl controller. HereV; is the data from actuator voltage to sensor voltage and using a
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Fig. 7. Loop gain [V/V]: simulation and experiment.

technique similar to [17], the feedthrough term in (16WwhereW, is a scalar sincéd/ = 1.
Doy = D2 = Ky, is found to be 0.033 if the first six modes  Notice thatV = 6 since it is desirable to find a controller

are considered in the model. of minimal order to control the first six modes of the structure.
Since the disturbance is assumed to enter the system throtigle feedthrough term is calculated by considering madesl
the same channel as the controller, the SISO transfer functidasV,,.. = 200 to obtain a reasonable spatial approximation
from w andw to the transverse deflection of the bearfw,¢), to the feedthrough term. Similarly, the SISO transfer functions
are the same, i.eG" (s, z). Considering (21) and (22) in (19) from w andw to the collocated sensor voltadé,, are denoted
by G¥,(s) (16)

N

G]V(S,.’L')_Z Wk( 2+ ix Kopt

2
s 2Cpwys +wj,
kl‘l—Ckk‘l— M

=7 -,
(30) Z 52 + 2Ckwk8 + wj T Hv. (@81
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Fig. 7. (Continued) Loop gain [V/V]: simulation and experiment.

The state-space model of the spati&l control problem can Co =Y Wig,...,¥N1,0,0,...,0,0]
be defined as Doy =Doy = Ky, (32)
Q- Ontixn+1  Inyixnv4r
Ao A2npiovn Based on (28)I" can be obtained for the performance output
where i in (29) using the orthogonality property in (3)
A = —diag (wf, ey w%rwf)
Ay = —2diag ((iwis - - -, CNWNS Cewe) r= [FN“XN“ 01"““’“} (33)
and OnN+1xN+1 ONgixN+1
By =B, =[0,...,0,0,%11,...,Upnq,1]" Ny
~ ™ - Nniax o
Cl(a:) :|:W1(-T),---7WN(-T) WhereF:dlag <1,...,1,w2 ( E=N+1 (Kkpt) )
Novax Matlab;-Analysis and Synthesis Toolbox was used to design
w? Z KP'Wi(2),0,...,0, 0} the spatial/, controller based on the system in (29) via a state-

e space approach.
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Fig. 9. Simulated spatial frequency response: closed-loop actuator voltage to beam deflection [m/V].

VIl. EXPERIMENTAL IMPLEMENTATION The frequency response of the controller is shown in Fig. 5.
The controller has a resonant nature because of the highly res-
The experimental setup is depicted in Fig. 4. The controllenant nature of the beam, i.e., the controller attempts to apply a
was implemented using a dSpace DS1103 rapid prototypihigh gain at each resonant frequency to minimize the resonant
Controller Board together with the Matlab and Simulink softresponse. Fig. 6 compares frequency responses of the open-loop
ware. The sampling frequency was set at 20 KHz, while tland closed-loop systems (actuator voltage to sensor voltage) for
cutoff frequencies of the two low-pass filters were set at 3 KHboth simulation and experimental results. The performance of
A high-voltage amplifier, capable of driving highly capacitivehe controller applied to the real system is as expected from the
loads, was used to supply necessary voltage for the actuatsigulation. The resonant responses of the first six modes have
piezoelectric patch. An HP89410A Dynamic Signal Analyzdseen reduced considerably once the controller was introduced.
and a Polytec PSV-300 Laser Doppler Scanning VibrometerFig. 7 compares the loop gain up to 1.6 KHz from simulation
were used to obtain frequency responses of the piezoelecti experiment. The simulation gives a gain margin of 12.4 dB
laminate beam. Important parameters of the beam, such as e#4-.55 KHz and a phase margin of 88at 78.5 Hz. The exper-
onant frequencies and damping ratios, were obtained from iheent gives a gain margin of 15.7 dB at 1.22 KHz and a phase
experiment and were used to correct the model. margin of 87.0 at 79.1 Hz.
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Fig. 10. Experimental spatial frequency response: open-loop actuator voltage to beam deflection [m/V].
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Fig. 11. Experimental spatial frequency response: closed-loop actuator voltage to beam deflection [m/V].

Figs. 8 and 9 show the simulated spatial frequency respon2és5, 28.5, 18, 18, 14 and 7 dB, respectively, over the entire
of the uncontrolled and controlled beam, respectively. Here,beam. Notice that the amount of vibration reduction is greater
is measured from one end of the beam, which is closer to tfoe low-frequency modes than for high-frequency modes. This
patches. The spatial frequency responses were also obtaiisedxpected since low-frequency modes generally contribute
from the experiments. A Polytec PSV-300 Laser Scannimgore to the spatigl{> horm of the system as can be seen in (8)
Vibrometer was used to obtain the frequency response of #ued (9). This is beneficial since low-frequency modes are often
beam’s vibration at a number of points on the surface. Tliee significant contributors to vibrations of flexible structures.
spatial frequency responses of the uncontrolled and controlledio show the advantage of the spattdh control over the
beam are shown in Figs. 10 and 11. It is observed that the repointwise’ -, control, the following simulation was performed.
nant responses of the first six modes have been reduced oveBheed on the designed spattdb controller, H, norm of the
entire beam due to the controller action, which is as expecteantrolled and uncontrolled beam has been plotted as a func-
from the simulation (compare with Figs. 8 and 9). The resonatin of = in Fig. 12(a). Next, a pointwisg(, controller was de-
responses of modes 1-6 have been reduced by approximas@yed to minimize the deflection at the middle of the beam,
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Fig. 12. Simulated, norm plots.

i.e.,z = 0.3 m. The controller had a gain margin of 12.7 dBand aroundr = 0.3 m. This is expected since the purpose of

and a phase margin of 87.8ased on this pointwise controller,this controller is to minimize vibration at = 0.3 m. In fact, the

‘H> norm of the controlled and uncontrolled beam has also bepaointwise controller only suppresses the odd numbered modes

plotted as a function af in Fig. 12(b). sincer = 0.3 mis anode for even numbered modes. Comparing
Fig. 12(a) clearly demonstrates the effect of the proposed spég. 12(a) and (b), it can be concluded that the spatiaton-

tial Ho controller in reducing the vibration of the beam. It igroller has an advantage over the pointwigg controller as it

obvious that thé{, norm of the entire beam has been reducadinimizes the vibration throughout the entire structure.

by the action of the controller in a more uniform manner. The Fig. 13 shows the controller’'s effectiveness in minimizing

highestH> norm of the uncontrolled beam has been reduced bgam'’s vibration in time domain. A step disturbance signal

approximately 69.5%, from 2.9610 ° to 9.0x 10 °. was applied through the piezoelectric actuator. The velocity
Meanwhile, Fig. 12(b) shows the effectiveness of the pointesponse at the middle of the beam was observed using the

wise control in local reduction of thé/s norm, especially at PSV Laser Vibrometer. The velocity response was filtered by a
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Fig. 13. Vibration at the middle of the beam.

low-pass filter with a cutoff frequency of 750 Hz. It can be seelReedthrough terms were added to correct the locations of
that the settling time of the velocity response has been redudedandwidth zeros of the system. The experiments showed
considerably because of the controller’s action. the effectiveness of the controller in reducing the structural
vibrations on a piezoelectric laminate beam. It was shown that
the spatialH, control has an advantage over the pointwise
‘H> control in minimizing structural vibration of the entire
A spatial H, controller was designed and implemented ostructure. The spatidls control minimizes thé<{, norm of the
a piezoelectric laminate beam. It was observed that suctemtire structure more uniformly, while the pointwisg control
controller resulted in suppression of transverse vibrations wiinimizes the{, norm more locally. The application of this
the entire structure by minimizing the spatfdh norm of the spatial?{; control is not confined to a piezoelectric laminate
closed-loop system. The controller was obtained by solvingbaam. It may be applied to more general vibration suppression
standardH» control problem for a finite-dimensional systemproblems.

VIII. CONCLUSION
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APPENDIX [9] C. R. Fuller, S. J. Elliot, and P. A. Nelsoictive Control of Vibra-

MODAL SOLUTION OF A SIMPLY -SUPPORTEDBEAM tion. New York: Academic, 1996. _
[10] H.T.Banks, R. C. Smith, and Y. Wan8mart Material Structures: Mod-

Consider a flexible beam with simply-supported or pinned eling, Estimation and Control Chichester, U.K.: Wiley-Masson, 1996.

ends. A simply supported beam has the following boundary cor*l

H. R. Pota and T. E. Alberts, “Multivariable transfer functions for a
slewing piezoelectric laminate beamASME J. Dyn. Syst., Measure-

ditions: ment, Contg.vol. 117, pp. 352-359, Sept. 1995.
[12] I. R. Petersen and H. R. Pota, “Minimax LQG optimal control of a flex-
Z(L,t) zz((),t) =0 (34) g)okce)obeam, in Proc. 3rd IFAC Symp. Robust Contr. Design, Prague,
822(0,t) _822(L,t) -0 35 [13] L. Meirovitch, Elements of Vibration Analysis New York: McGraw
812 T 92 - ( ) Hill, 1975.

The

deflections at the beam’s ends are restricted. The last equati

[14] T. E. Alberts and J. A. Colvin, “Observations on the nature of transfer
first boundary condition signifies that the transverse functions for control of piezoelectric laminated, Intell. Material Syst.
Structuresvol. 8, no. 5, pp. 605-611, 1991.
] T. E. Alberts, T. V. DuBois, and H. R. Pota, “Experimental verification

signifies zero moment at the beam’s ends since there is N0 ~ of transfer functions for a slewing piezoelectric laminate beadojitr.
rotational restriction at the ends. The transverse deflection is  Eng. Practicevol. 3, no. 2, pp. 163-170, 1995.

z(x,t

. O. R. Moheimani and M. Fu, “Spati&l, norm of flexible structures

oo . . .o [16
) - Ek:l Wk(x)Qk(t) The eigenfunction that satisfies and its application in model order selection,”Rnoc. 37th IEEE Conf.

the boundary conditions and the eigenvalue problem can be Decision Contr. Tampa, FL, Dec. 1998, pp. 3623—3624.

shown to be a sinusoidal function: [17] S.O.R.Moheimani, “Experimental verification of the corrected transfer
function of a piezoelectric laminate beamEEE Trans. Contr. Syst.
) A Technol, vol. 8, no. 4, pp. 660-666, July 2000.

The orthogonality properties of the eigenvectors are asin (3) and

(4), where the natural frequency at any mddebtained from
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