
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 4, JULY 2002 533

Spatial 2 Control of a Piezoelectric Laminate Beam:
Experimental Implementation

Dunant Halim, Student Member, IEEE,and S. O. Reza Moheimani, Senior Member, IEEE

Abstract—The aim of this paper is to design and experimentally
evaluate the performance of a feedback controller to suppress vi-
bration of a flexible beam. The controller is designed to minimize
the spatial 2 norm of the closed-loop system to ensure average
reduction of vibration throughout the entire structure. Vibrations
of the first six bending modes of the beam are to be controlled
using a collocated piezoelectric actuator-sensor pair attached to the
beam. Feedthrough terms are incorporated into the flexible-struc-
ture model to correct the locations of the in-bandwidth zeros. It is
shown that the spatial 2 control has an advantage over the point-
wise 2 control in minimizing the vibration of the entire structure.
The spatial 2 controller minimizes the 2 norm of the entire
structure more uniformly, while the pointwise 2 controller only
has a local effect. The implemented spatial 2 controller is able to
minimize the first six bending modes of the beam effectively. This
spatial 2 control can also be applied to more general structural
vibration suppression problems.

Index Terms— 2 control, flexible structures, intelligent struc-
tures, piezoelectric transducers, spatial 2 norm, vibration con-
trol.

I. INTRODUCTION

M ANY engineering applications use structures that can
be considered to be flexible. Flexible structures are dis-

tributed parameter systems. Therefore, vibration of each point
is dynamically related to the vibrations of every other point over
the structure. It is important to design a controller with a view
to minimizing structural vibrations of the entire structure, rather
than a limited number of points. This would ensure that struc-
tural vibrations of the entire structure is suppressed.

This paper presents experimental implementation of the con-
cept of spatial control on a piezoelectric laminate beam for
the first time. The controller is designed such that the spatial

norm of the closed-loop system is minimized. Minimizing
the spatial norm of the system will ensure vibration suppres-
sion over the entire structure in an average sense. The spatial
control problem can be solved by finding an equivalent system
representation that allows a standard control optimization
problem to be solved instead.

The spatial control produces a controller with similar
dimensions as that of the plant. If a model is developed via
the modal analysis technique, a direct truncation can be used
to obtain a finite-dimensional model of the system. However,
it is known that the locations of the in-bandwidth zeros are
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not accurate because of the truncation of high-frequency dy-
namics [1]–[4]. This inaccuracy can have negative effect on the
closed-loop stability. To fix this problem, feedthrough terms are
added to the model to correct the locations of the zeros as dis-
cussed in [1]–[4]. This technique is known in the aeroelasticity
literature as the mode acceleration method [5].

To demonstrate the proposed controller, a single-
input–single-output (SISO) spatial controller is designed
for a piezoelectric laminate beam to suppress the vibration of
the first six bending modes of the structure. The controller is
implemented on the structure, a simply-supported beam with a
collocated piezoelectric actuator-sensor pair.

Piezoelectric actuators and sensors have been used in many
vibration control applications of flexible structures [6]–[12].
Piezoelectricity was discovered in 1880 by French scientists
Pierre and Paul-Jacques Curie. The piezoelectric effect is
observed in many crystalline materials, which strain when
exposed to a voltage and produce a voltage when strained.
In other words, these materials are capable of transforming
mechanical energy into electrical energy andvice versa. In the
experiments, piezoelectric actuators and sensors are used.

This paper is organized as follows. Section II describes the
dynamics of flexible structures with collocated piezoelectric ac-
tuator-sensor pairs. Section III describes the notion of spatial

norm that is used as a performance measure for flexible
structures. Section IV deals with the model correction to re-
duce the error in the locations of the in-bandwidth zeros of the
model. Section V describes the concept of spatialcontrol for
flexible structures. Section VI discusses the design of a feed-
back SISO controller for suppressing the vibration of the first
six bending modes of a simply supported piezoelectric laminate
beam. Section VII presents experimental implementation of the
controller on a beam structure. The last section draws conclu-
sions. The modal solution of a simply supported beam is in-
cluded in Appendix.

II. M ODELS OFFLEXIBLE STRUCTURES

This section briefly explains how a model of a beam with a
number of collocated piezoelectric actuator-sensor pairs can be
obtained using a modal analysis technique. Interested readers
can refer to [8], [9] for more detailed derivations.

Consider a homogeneous Euler–Bernoulli beam with length
, width and thickness as shown in Fig. 1. The piezoelec-

tric actuators and sensors have length, width and thick-
ness . In this paper, is assumed, which is true for the
patches that are used in experiments. Thus, the assumption of
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Fig. 1. A simply supported beam with a number of collocated piezoelectric
patches.

uniform beam properties can be justified. However, approxima-
tion methods such as the finite element method can also be used
to deal with more general nonuniform structures.

Suppose there are collocated actuator-sensor pairs dis-
tributed over the structure. Piezoelectric patches on one side of
the beam are used as sensors, while patches on the other side are
used as actuators. Voltages that are applied to actuating patches
are represented by .

A model of the structure can be obtained via the modal anal-
ysis procedure. This procedure requires finding a solution to
the partial differential equation (PDE) which describes the dy-
namics of the structure. The governing PDE of a flexible beam
is as follows [7], [13]:

(1)

where the beam transverse deflection at pointand at time is
denoted by . The deflection is assumed to be in
the form of , where is the
eigenfunction and is the time-dependent solution. Also,,

, , and represent the density, the cross-sectional area of the
beam, the Young’s Modulus and the moment of inertia about the
beam’s neutral axis, respectively. The forcing moment acting on
the beam is denoted by .

The forcing moment on the beam, , is generated by
piezoelectric actuators. A voltage, , which is applied to the
th actuator, would produce a forcing moment,

(2)

where is a step function and , denote theth actu-
ator’s locations along the axis. depends on the properties
of the structure and the piezoelectric patches. Thus, the forcing
moment depends on the actuator’s location along the beam as
well as the applied voltage.

The PDE can be solved independently for each mode by using
the orthogonality properties of its eigenfunctions which are
as follows for the case of a uniform beam:

(3)

(4)

where describes the natural frequency of the beam at mode
. Here, is Kronecker’s delta function, that is, for

all and equals one if .

The multiple-input–infinite-output (MIIO) transfer function
from the applied actuator-voltages to the transverse struc-
tural deflection at location is

(5)

where and the mode number is denoted
by . is a function of the location of theth piezoelectric ac-
tuator, the eigenfunction and the properties of the struc-
ture and the piezoceramic patch (see [11], [14], and [15]). The
damping ratio is denoted by .

Such models have the interesting property that they describe
spatial and spectral properties of the system. The spatial infor-
mation of these models can then be used to design controllers,
which guarantee a certain level of damping for the entire struc-
ture.

Furthermore, the multiple-input–multiple-output (MIMO)
transfer function of the flexible structure with piezoelectric
actuator-sensor (collocated) pairs can be determined in a
similar manner. The transfer function from the applied ac-
tuator-voltages to the induced voltages at the sensor

is

(6)

where is a constant based on the properties of the struc-
ture and the piezoceramic patches.

III. SPATIAL NORM

This section presents an overview of the concept of spatial
norm. Consider the transfer function of a flexible structure,

, as in (5). This model describes the spatial and spectral
behavior of the structure. The norm of can be used
as a measure of performance at a particular point. However, it
cannot be used as a global performance measure for the entire
structure as it is calculated based on the response at a specific lo-
cation on the structure [6], [16]. To obtain a global performance
measure for the entire structure, the notion of spatialnorm
can be used.

The spatial norm of the transfer function is de-
fined [6], [16] as,

(7)

where is the set over which is defined. For a beam,
. Here, represents the trace of the matrix. Taking

advantage of the orthonormality of the eigenfunctions,, in
(3), it can be shown that

(8)

where

(9)
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From definition (7), it can be argued that the spatialnorm
is a suitable measure of performance for spatially distributed
linear time-invariant systems, such as those described in (5).
Furthermore, if the system can be broken into a number of or-
thonormal modes, then the contribution of each mode to the total
spatial norm of the system can be determined from (8) and
(9). Also, since the spatial norm of a system of the form (5)
is equivalent to the norm of a finite-dimensional system, it
can be calculated using standard software.

Another way of calculating the spatial norm of a system
is to first obtain a state-space representation of the system and
then to apply definition (7) to determine a finite-dimensional
system whose norm is equivalent to the spatial norm of
the spatially distributed system. To demonstrate this, suppose a
state-space representation of the transfer function can
be described as

(10)

where are external disturbances through the actuators. No-
tice that for a vibratory system such as a beam, represents
the deflection at a particular point,, along the structure. Such a
model can be obtained by truncating the series (5) and keeping
the first modes. Then the spatial norm of the transfer func-
tion can be shown to be equivalent to [6], [16]

(11)

where

(12)

and

(13)

Hence, the spatial norm of can be determined by
calculating the norm of .

In certain problems, it may be necessary to weight the output
of in a nonuniform manner. Imagine a situation where
vibration of a particular region on the surface of a flexible struc-
ture is to be damped more heavily. In such a case, the definition
(7) can be modified to allow for a spatially distributed weighting
function. Hence, the weighted spatial 2-norm ofis defined to
be

(14)
Note that if is chosen to be a Dirac Delta function, i.e.,

, (14) reduces to

(15)

where . Hence, definition (14) collapses to
the norm of a finite-dimensional system.

IV. M ODEL CORRECTION

In practice, dynamical models of a flexible structure as de-
scribed in (5) and (6) have to be truncated to represent the system
by a finite-dimensional model. The model can be truncated so
to include only the modes within the frequency bandwidth of in-
terest. However, the truncation of the model produces additional
error in the locations of the in-bandwidth zeros. This is due to
the fact that the contribution of the out-of-bandwidth modes, i.e.,
high-frequency modes, is generally ignored in the truncation.

One way to improve the truncated model dynamics is to in-
clude feedthrough terms to correct the locations of the in-band-
width zeros. This technique is known in the aeroelasticity liter-
ature as the mode acceleration method [5] and has been recently
revisited in [1]–[4].

Thus, the infinite-dimensional model of the collocated system
in (6) can be approximated as

(16)

where is the number of modes included in the model and
is a matrix added to correct the locations of

in-bandwidth zeros. For a SISO system, will be a scalar.
For a general multivariable system, can be found using the
method proposed in [3] and [17]. This is done by determining a
feedthrough term that minimizes the norm of the difference
between the infinite-dimensional and the truncated models,

(17)

(18)

Here, is the cutoff frequency of the ideal low-pass filter,
, which is chosen to lie within the interval ( ).

Similarly, the approximate spatial transfer function of
in (5) can be described by

(19)

where is a vector. is a function of the spatial
variable, , which has to be estimated from the modal model of
the system.

One possibility is to find a feedthrough term that minimizes
the weighted spatial norm of the error between the infinite-
dimensional and the truncated models [2]. The term is
determined such that the following cost function is minimized:

(20)

Here, is an ideal low-pass weighting function dis-
tributed spatially over with its cutoff frequency, , chosen
to lie within the interval ( ).

The cost function (20) is minimized by setting [2]

(21)
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Fig. 2. SpatialH control of a flexible beam.

Fig. 3. Experimental apparatus.

where

(22)

Note that in practice only a finite number of modes can be in-
cluded in order to calculate the feedthrough term, . This
should not cause a major problem as the effect of modes will
diminish with increasing .

V. SPATIAL CONTROL OF A PIEZOELECTRICLAMINATE

BEAM

This section is concerned with the problem of spatialcon-
trol for flexible structures. Consider a typical system of a flex-
ible structure such as the one shown in Fig. 2. The system con-
sists of only one piezoelectric actuator-sensor pair for the sake
of clarity. Here, the purpose of the controller is to reduce the
effect of disturbance, , on the entire structure, using piezo-
electric actuators and sensors. The concept of spatialcontrol
was introduced in [6], [16] to address problems of this nature.

A spatially distributed linear time-invariant dynamical system
such as the beam in Fig. 2 can be defined in its state-space form
as

(23)

where is the state, is the disturbance input,
is the control input, is the performance output, is

the measured output. For a flexible structure, represents
the spatial displacement at time, where .

The system matrices in (23) can be obtained from transfer
functions (16) and (19). Note that for the system shown in Fig. 2,

in (23) is the feedthrough term described in
(16), while is in (21). Moreover,

since disturbance is assumed to enter the system through the
actuator.

TABLE I
PROPERTIES OF THEPIEZOELECTRICLAMINATE BEAM

Fig. 4. Experimental setup.

There is still a difficulty in using feedthrough terms in the
performance output, (23) since the spatial norm
of the system will not remain finite. To avoid this problem,
feedthrough terms are replaced with second-order out-of-band-
width terms as suggested in [1]. It has to be ensured that the
second-order term has a zero-frequency content that is close
to (23). The resonant frequency of the second-order system,

, is set above the bandwidth of interest. Also, a relatively
high damping ratio, , is used, so that the second-order system
behaves like a low-pass filter.

Thus the modified system is

(24)

where consists of the plant’s original states,and the states
due to the extra second-order term.

Then, the spatial control problem is to design a controller

(25)
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(a)

(b)

Fig. 5. Frequency response of the controller (input voltage to output voltage [V/V]).

such that the closed-loop system minimizes the weighted spatial
norm the closed-loop system [6], [16]

(26)

Here, is a spatial weighting function and is the
closed-loop transfer function from to . The purpose of
is to emphasize the region where the vibration is to be damped
more heavily. In this particular application, . In other
words, the entire beam is weighted equally.

It can be shown, using the method in Section III, that the
above problem is equivalent to a standard control problem
for the following system:

(27)

where and is any matrix that satisfies

(28)
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(a)

(b)

Fig. 6. Simulation and experimental frequency responses (actuator voltage to sensor voltage [V/V]).

Hence, the system in (27) can be solved using a standard
control technique. The spatial controller can be regarded as
a controller that reduces structural vibration in an average sense.

Designing a controller for the system (27) may result in
a very high gain controller, which may not have the required
robustness properties. This problem can be addressed by intro-
ducing a weight factor, , on the control signal. This can be
achieved by rewriting (27) as

(29)

In practice, one has to make a compromise between the level of
vibration reduction and controller gain by choosing a suitable.

VI. CONTROLLER DESIGN

This section explains the details of a spatial controller
that is designed and implemented on a simply supported flex-
ible beam in the Laboratory for Dynamics and Control of Smart
Structures at the University of Newcastle, Australia. A simply
supported flexible beam with a collocated piezoelectric actu-
ator-sensor pair attached to it is used in the experiments. The
apparatus is mounted on an optical table and is shown in Fig. 3.
The structure consists of a 60 cm long uniform aluminum beam
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(c)

(d)

Fig. 6. (Continued.) Simulation and experimental frequency responses (actuator voltage to sensor voltage [V/V]).

of a rectangular cross section (50 mm3 mm). The beam is
pinned at both ends. A pair of piezoelectric ceramic elements is
attached symmetrically to either side of the beam, 50 mm away
from one end of the beam. The piezoceramic elements used in
the experiment are PIC151 patches. These patches are 5 mm
wide, 70 mm long, and 0.25 mm thick. The physical parameters
of PIC151 are given in Table I. A model of the piezoelectric lam-
inate beam is obtained via modal analysis (see the Appendix).
The equivalent standard control problem described in (29)
is used for the proposed spatial controller. Here, is the

output voltage from the piezoelectric sensor, whileis the con-
trol input voltage applied to the actuating patch.

In this paper, a SISO controller is designed for the purpose
of controlling only the first six vibration modes of the beam.
Hence, the model is truncated to include only the first six
bending modes. The effect of out-of-bandwidth modes has
to be taken into consideration to correct the locations of the
in-bandwidth zeros of the truncated model as discussed in
Section IV. Based on the experimental frequency-response
data from actuator voltage to sensor voltage and using a
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Fig. 7. Loop gain [V/V]: simulation and experiment.

technique similar to [17], the feedthrough term in (16),
, is found to be 0.033 if the first six modes

are considered in the model.

Since the disturbance is assumed to enter the system through
the same channel as the controller, the SISO transfer functions
from and to the transverse deflection of the beam, ,
are the same, i.e., . Considering (21) and (22) in (19)

(30)

where is a scalar since .

Notice that since it is desirable to find a controller
of minimal order to control the first six modes of the structure.
The feedthrough term is calculated by considering modes
to to obtain a reasonable spatial approximation
to the feedthrough term. Similarly, the SISO transfer functions
from and to the collocated sensor voltage,, are denoted
by (16)

(31)
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Fig. 7. (Continued.) Loop gain [V/V]: simulation and experiment.

The state-space model of the spatial control problem can
be defined as

where

and

(32)

Based on (28), can be obtained for the performance output
in (29) using the orthogonality property in (3)

(33)

where .

Matlab -Analysis and Synthesis Toolbox was used to design
the spatial controller based on the system in (29) via a state-
space approach.
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Fig. 8. Simulated spatial frequency response: open-loop actuator voltage to beam deflection [m/V].

Fig. 9. Simulated spatial frequency response: closed-loop actuator voltage to beam deflection [m/V].

VII. EXPERIMENTAL IMPLEMENTATION

The experimental setup is depicted in Fig. 4. The controller
was implemented using a dSpace DS1103 rapid prototyping
Controller Board together with the Matlab and Simulink soft-
ware. The sampling frequency was set at 20 KHz, while the
cutoff frequencies of the two low-pass filters were set at 3 KHz.
A high-voltage amplifier, capable of driving highly capacitive
loads, was used to supply necessary voltage for the actuating
piezoelectric patch. An HP89410A Dynamic Signal Analyzer
and a Polytec PSV-300 Laser Doppler Scanning Vibrometer
were used to obtain frequency responses of the piezoelectric
laminate beam. Important parameters of the beam, such as res-
onant frequencies and damping ratios, were obtained from the
experiment and were used to correct the model.

The frequency response of the controller is shown in Fig. 5.
The controller has a resonant nature because of the highly res-
onant nature of the beam, i.e., the controller attempts to apply a
high gain at each resonant frequency to minimize the resonant
response. Fig. 6 compares frequency responses of the open-loop
and closed-loop systems (actuator voltage to sensor voltage) for
both simulation and experimental results. The performance of
the controller applied to the real system is as expected from the
simulation. The resonant responses of the first six modes have
been reduced considerably once the controller was introduced.

Fig. 7 compares the loop gain up to 1.6 KHz from simulation
and experiment. The simulation gives a gain margin of 12.4 dB
at 1.55 KHz and a phase margin of 88.4at 78.5 Hz. The exper-
iment gives a gain margin of 15.7 dB at 1.22 KHz and a phase
margin of 87.0 at 79.1 Hz.
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Fig. 10. Experimental spatial frequency response: open-loop actuator voltage to beam deflection [m/V].

Fig. 11. Experimental spatial frequency response: closed-loop actuator voltage to beam deflection [m/V].

Figs. 8 and 9 show the simulated spatial frequency responses
of the uncontrolled and controlled beam, respectively. Here,
is measured from one end of the beam, which is closer to the
patches. The spatial frequency responses were also obtained
from the experiments. A Polytec PSV-300 Laser Scanning
Vibrometer was used to obtain the frequency response of the
beam’s vibration at a number of points on the surface. The
spatial frequency responses of the uncontrolled and controlled
beam are shown in Figs. 10 and 11. It is observed that the reso-
nant responses of the first six modes have been reduced over the
entire beam due to the controller action, which is as expected
from the simulation (compare with Figs. 8 and 9). The resonant
responses of modes 1–6 have been reduced by approximately

25.5, 28.5, 18, 18, 14 and 7 dB, respectively, over the entire
beam. Notice that the amount of vibration reduction is greater
for low-frequency modes than for high-frequency modes. This
is expected since low-frequency modes generally contribute
more to the spatial norm of the system as can be seen in (8)
and (9). This is beneficial since low-frequency modes are often
the significant contributors to vibrations of flexible structures.

To show the advantage of the spatial control over the
pointwise control, the following simulation was performed.
Based on the designed spatial controller, norm of the
controlled and uncontrolled beam has been plotted as a func-
tion of in Fig. 12(a). Next, a pointwise controller was de-
signed to minimize the deflection at the middle of the beam,
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(a)

(b)

Fig. 12. SimulatedH norm plots.

i.e., m. The controller had a gain margin of 12.7 dB
and a phase margin of 87.6. Based on this pointwise controller,

norm of the controlled and uncontrolled beam has also been
plotted as a function of in Fig. 12(b).

Fig. 12(a) clearly demonstrates the effect of the proposed spa-
tial controller in reducing the vibration of the beam. It is
obvious that the norm of the entire beam has been reduced
by the action of the controller in a more uniform manner. The
highest norm of the uncontrolled beam has been reduced by
approximately 69.5%, from 2.9510 to 9.0 10 .

Meanwhile, Fig. 12(b) shows the effectiveness of the point-
wise control in local reduction of the norm, especially at

and around m. This is expected since the purpose of
this controller is to minimize vibration at m. In fact, the
pointwise controller only suppresses the odd numbered modes
since m is a node for even numbered modes. Comparing
Fig. 12(a) and (b), it can be concluded that the spatialcon-
troller has an advantage over the pointwise controller as it
minimizes the vibration throughout the entire structure.

Fig. 13 shows the controller’s effectiveness in minimizing
beam’s vibration in time domain. A step disturbance signal
was applied through the piezoelectric actuator. The velocity
response at the middle of the beam was observed using the
PSV Laser Vibrometer. The velocity response was filtered by a
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(a)

(b)

Fig. 13. Vibration at the middle of the beam.

low-pass filter with a cutoff frequency of 750 Hz. It can be seen
that the settling time of the velocity response has been reduced
considerably because of the controller’s action.

VIII. C ONCLUSION

A spatial controller was designed and implemented on
a piezoelectric laminate beam. It was observed that such a
controller resulted in suppression of transverse vibrations of
the entire structure by minimizing the spatial norm of the
closed-loop system. The controller was obtained by solving a
standard control problem for a finite-dimensional system.

Feedthrough terms were added to correct the locations of
in-bandwidth zeros of the system. The experiments showed
the effectiveness of the controller in reducing the structural
vibrations on a piezoelectric laminate beam. It was shown that
the spatial control has an advantage over the pointwise

control in minimizing structural vibration of the entire
structure. The spatial control minimizes the norm of the
entire structure more uniformly, while the pointwise control
minimizes the norm more locally. The application of this
spatial control is not confined to a piezoelectric laminate
beam. It may be applied to more general vibration suppression
problems.
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APPENDIX

MODAL SOLUTION OF A SIMPLY-SUPPORTEDBEAM

Consider a flexible beam with simply-supported or pinned
ends. A simply supported beam has the following boundary con-
ditions:

(34)

(35)

The first boundary condition signifies that the transverse
deflections at the beam’s ends are restricted. The last equation
signifies zero moment at the beam’s ends since there is no
rotational restriction at the ends. The transverse deflection is

. The eigenfunction that satisfies
the boundary conditions and the eigenvalue problem can be
shown to be a sinusoidal function:

(36)

The orthogonality properties of the eigenvectors are as in (3) and
(4), where the natural frequency at any modeobtained from
the solution of the eigenvalue problem is

(37)
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