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Experimental Implementation of Spatial Control
on a Piezoelectric-Laminate Beam
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Abstract—This paper is aimed to develop a feedback controller
that suppresses vibration of flexible structures. The controller
is designed to minimize the spatial norm of the closed-loop
system. This technique guarantees average reduction of vibration
throughout the entire structure. A feedthrough term is incorpo-
rated into the truncated flexible-structure model to compensate
for the neglected dynamics in the finite-dimensional model.
Adding the feedthrough term reduces the uncertainty associated
with the truncated model, which is instrumental in ensuring the
robustness of the closed-loop system. The controller is applied to
a simply-supported piezoelectric-laminate beam and is validated
experimentally to show the effectiveness of the proposed controller
in suppressing structural vibration. It is shown that the spatial

control has an advantage over the pointwise control
in minimizing the vibration of the entire structure. This spatial

control methodology can also be applied to more general
structural vibration suppression problems.

Index Terms—Flexible structures, piezoelectric actuators,
piezoelectric sensors, smart structures, spatial control, vibration
control.

I. INTRODUCTION

V IBRATION is a natural phenomena that may occur in all
dynamic systems. Vibration can be detrimental to struc-

tural performance and stability, and so, it is important to find
a means of suppressing structural vibrations. In this paper, we
describe a controller design framework for suppressing the un-
wanted structural vibrations in flexible structures.

Flexible structures are distributed parameter systems. There-
fore, vibration of each point is dynamically related to the vi-
bration of every other point over the structure. If a controller
is designed with a view to minimizing structural vibrations at a
limited number of points, it could have negative effects on vi-
bration profile of the rest of the structure. The concept of spatial

control was first introduced by the second author in [1] for
the purpose of suppressing structural vibration over the entire
structure. This paper presents experimental implementation of
this concept on a piezoelectric-laminate beam for the first time.

Based on this concept, the controller is designed such that
the spatial norm of the closed-loop system is minimized.
Minimizing the spatial norm of the system will guarantee
vibration suppression over the entire structure in an average
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sense. This spatial control problem can be solved by finding
an equivalent system representation that allows a standard
control optimization problem to be solved instead.

Distributed systems have theoretically an infinite number of
modes and are represented by infinite-dimensional models. In
[2]–[4], infinite-dimensional controllers are obtained from the
infinite-dimensional models. Finite-dimensional controllers are
then approximated from the infinite-dimensional controllers. It
is shown that the finite-dimensional controllers provide robust
stabilization in the presence of small time delays in the systems.
On the other hand, our approach is to truncate the infinite-di-
mensional models of the systems and to add feedthrough terms
to the truncated models to compensate for the neglected dy-
namics. The finite-dimensional spatial controllers are then
designed based on the corrected finite-dimensional models.

The purpose of the feedthrough term is to significantly reduce
the uncertainty associated with the truncated model. It is known
that the gain and locations of the in-bandwidth zeros are not ac-
curate because of truncation [5]–[8]. This inaccuracy can have
negative effect on the closed-loop stability. To fix this problem,
we add a feedthrough term to the truncated model to correct the
gain and locations of the zeros as discussed in [5]–[8]. This tech-
nique is known in the aeroelasticity literature as the mode-accel-
eration method [9]. Incorporating the feedthrough term into the
truncated (finite dimensional) model reduces the uncertainty as-
sociated with the truncation, which is important in ensuring the
closed-loop robustness.

To demonstrate our proposed controller, a single input–single
output (SISO) spatial controller is designed for a piezo-
electric-laminate beam to suppress the vibration of the first six
bending modes of the structure. The controller is applied to a
real structure, a simply-supported beam with a collocated piezo-
electric actuator–sensor pair. Piezoelectric devices have shown
promising applications in active vibration control of flexible
structures [10]–[14]. The ability of piezoelectric materials to
convert mechanical strain into electrical voltage and vice versa
allows them to be used as actuators and sensors when placed on
flexible structures.

The problem of the control for distributed systems
has been addressed in the literature (such as in [2]–[4] and
[15]–[17]). In [2]–[4] and [17], the models for the controller
design only describe vibrations at one or several locations
along the structures, i.e., pointwise models. Thus, the con-
troller is designed based on the information of one or a few
locations along the structure. In contrast, the main emphasis
of the control-design methodology presented here is to reduce
vibration of the structure in a spatial sense. This is done
by employing the spatial information embedded within the

1083-4435/02$17.00 © 2002 IEEE
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Fig. 1. Simply-supported beam with a number of collocated piezoelectric
patches.

models of structures that result from the modal analysis. A
further purpose of the paper is to ensure that the developed
methodology is implementable on flexible structures. This is
demonstrated by implementing a spatial controller on a
piezoelectric-laminate beam.

This paper is organized as follows. Section II describes the
dynamics of flexible structures such as those with collocated
piezoelectric actuator–sensor pairs. Section III briefly describes
the notion of spatial norms that are used as performance mea-
sures for flexible structures. Section IV deals with the model
correction to compensate for the neglected dynamics in the trun-
cated (finite-dimensional) model. Section V describes the con-
cept of spatial control for flexible structures. Section VI
discusses the design of a feedback SISO controller for sup-
pressing the vibration of the first six bending modes of a simply-
supported piezoelectric-laminate beam. Section VII presents ex-
perimental validations on the application of the developed con-
troller to a beam structure. The last section concludes the paper.

II. M ODELS OFFLEXIBLE STRUCTURES

In this section, we briefly explain how a model of a beam
with a number of collocated PZT actuator–sensor pairs can be
obtained using a modal analysis technique. Interested readers
can refer to [11], [12] for more detailed derivations.

Consider a homogeneous Euler–Bernoulli beam with length
, width , and thickness as shown in Fig. 1. The piezoelec-

tric actuators and sensors have length, width , and thick-
ness . In this paper, we assume that , which is true for
the patches that are used in our experiments. Thus, the assump-
tion of uniform beam properties can be justified. However, we
can also use approximation methods such as the finite-element
method to deal with more general nonuniform structures.

Suppose there are collocated actuator–sensor pairs dis-
tributed along the structure. Piezoelectric patches on one side of
the beam are used as sensors, while patches on the other side are
used as actuators. Voltages that are applied to actuating patches
are represented by .

We assume that a model of the structure is obtained via the
modal analysis procedure. This procedure requires finding a so-
lution to the partial differential equation (PDE) which describes
the dynamics of the composite system. The governing PDE of a
flexible beam is as follows [10], [18]:

(1)

where the beam transverse deflection at pointand at time is
denoted by . Also, and represent the density and the
cross-sectional area of the beam, whileand are the Young’s
Modulus and the moment of inertia about the neutral axis of
the beam, respectively. The right-hand-side term represents the
forcing function produced by the piezoelectric actuator. In this
case, is the forcing moment acting on the beam.

The PDE can be solved independently for each mode by using
the orthogonality properties of its eigenfunctions which are
as follows for the case of a uniform beam:

(2)

(3)

where describes the natural frequency of the beam at mode
. Here, is Kronecker’s delta function, that is, for

all , and equals one if .
The multiple-input, infinite-output (MIIO) transfer function

from the applied actuator-voltages to the transverse struc-
tural deflection at location is

(4)

where and the mode number is de-
noted by . is a function of the location of theth piezo-
electric actuator–sensor pair and the eigenfunction (see
[14], [19], [20]). The damping ratio is denoted by and , re-
spectively, is a constant that is dependent on the properties of
the structure and the piezoceramic patches.

Such models have the interesting property that they describe
spatial and spectral properties of the system. The spatial in-
formation of these models can then be used to design con-
trollers, which guarantee a certain level of damping for the
entire structure.

Furthermore, the multiple input–multiple output (MIMO)
transfer function of the flexible structure with piezoelectric
actuator–sensor (collocated) pairs can be determined in a
similar manner. The transfer function from the applied ac-
tuator-voltages to the induced voltages at the sensor

is

(5)

where is a constant based on the properties of
the structure and the piezoceramic patches.

III. SPATIAL NORMS

This section presents an overview of the spatial norms of sig-
nals and systems. For a more detailed review of this concept, the
reader is referred to [8]. Consider the transfer function ,
where , which maps an input signal to the
output signal (see Fig. 2). Here, is
spatially distributed over the set.
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Fig. 2. SystemG(s; x).

The spatial norm of the signal is defined as

(6)

The spatial norm of the signal can be interpreted as the
total energy of the signal . Now, let be the linear oper-
ator which maps the inputs of to its outputs. The spatial
induced norm of is defined as (see [8])

(7)

where .
Moreover, following [8], the spatial norm of is

defined as

(8)

where represents the maximum eigenvalue of the
matrix .

Reference [8, Theorem (3.1)] gives a representation of the
spatial norm of in terms of total energy of
and energy of the input signal . The theorem states that

(9)

It is possible to add spatial weights to all of the above definitions,
to emphasize the regions that are of more importance. This issue
will be further explained in Section V.

IV. M ODEL CORRECTION

In practice, dynamical models of a flexible structure as de-
scribed in (4) and (5) can be truncated to represent the system
with a finite-dimensional model. The model can be truncated so
to include only the modes within the frequency bandwidth of
interest. However, the neglected dynamics associated with trun-
cation of the model produces additional error in the gain and
locations of the in-bandwidth zeros. This is due to the fact that
the contribution of the out-of-bandwidth modes is ignored in
the truncation. As a consequence, the neglected dynamics can
be detrimental to the robustness of the closed-loop system.

One way to improve the truncated model dynamics is to
include a feedthrough term to correct the gain and locations
of the in-bandwidth zeros. This technique is known in the
aeroelasticity literature as the mode-acceleration method [9]
and has been revisited in [5]–[8]. Adding a feedthrough term
to the truncated (finite dimensional) model compensates for
the neglected dynamics in the model, which is important in
ensuring the closed-loop stability.

Fig. 3. SpatialH control of a flexible beam.

Fig. 4. SpatialH control problem.

The infinite-dimensional model of the collocated system in
(5) can be approximated as

(10)

where is the number of modes included in the model, and
is a matrix added to compensate for the ne-

glected dynamics. For a general multivariable system, can
be found using the method proposed in [7]. For a SISO system,

will be a scalar.
Similarly, we describe the approximate spatial transfer func-

tion of in (4) by

(11)

where is a vector. is a function of the spatial
variable, . It has to be estimated from the modal model of the
system.

One technique that can be used is to find the feedthrough
term that minimizes the weighted spatial norm of the
error between the infinite dimensional and truncated models
is presented in [8]. The term is determined such that
the following cost function is minimized:

(12)

Here, is an ideal low-pass weighting function dis-
tributed spatially over with its cutoff frequency chosen
to lie within the interval .

The cost function (12) is minimized by setting [8]

(13)
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Fig. 5. Piezoelectric-laminate beam.

where

(14)

Note, that in practice we can only include a finite number
of modes to calculate the feedthrough term, . So,
in (13) is calculated from to with
is chosen so that the neglected dynamics in the model can
be compensated sufficiently. Naturally, the larger , the
smaller the uncertainty will be. However, choosing a large
enough is quite reasonable as its effect diminishes when

since the contribution of higher frequency modes
is decreasing (see [6]). Furthermore, since the calculation of
the feedthrough term in (13) is straightforward, there is no
restriction on how many high frequency (out-of-bandwidth)
modes can be included in the calculation.

V. SPATIAL CONTROL OF A PIEZOELECTRIC-LAMINATE

BEAM

This section is concerned with the problem of spatial
control for flexible structures. Consider a typical disturbance re-
jection problem for a flexible structure such as the one shown
in Fig. 3. The system consists of only one piezoelectric actu-
ator–sensor pair for the sake of clarity. Here, the purpose of the
controller is to reduce the effect of disturbance on the entire
structure, using piezoelectric actuators and sensors. The concept
of spatial control was introduced in [1] to address problems
of this nature.

A spatially-distributed linear time-invariant dynamical
system such as the beam in Fig. 3 can be defined in its
state-space form as

(15)

where is the state, is the disturbance input,
is the control input, is the performance output, is

the measured output. For a flexible structure, represents
the spatial displacement at time, where .

The system matrices in (15) can be obtained from transfer
functions (10) and (11). Note, that for the system shown in

TABLE I
PROPERTIES OFPIC151 PIEZOCERAMICS

Fig. 6. Experimental setup.

Fig. 3, in (15) is the feedthrough term de-
scribed in (10), while is in (13). More-
over, since disturbance is assumed to enter the system
through the actuator.

The spatial control problem is to design a controller

(16)

such that the closed-loop system satisfies

(17)
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(a) (b)

Fig. 7. Frequency response of the controller (input voltage to output voltage [V/V]).

where is the set of all stabilizing controllers and

(18)

Here, is a spatial-weighting function. The purpose of
is to emphasize the region where the vibration is to be damped
more heavily. The numerator in (18) is the weighted spatial
norm of [21], [22]. Therefore, can be interpreted as
the ratio of the spatial energy of the output of the system to the
energy of its input. The control problem is depicted in Fig. 4.

It can be shown by the method in [1] that the above problem is
equivalent to a standard control problem for the following
system:

(19)

where and . Here, is any matrix
that satisfies

(20)

where . Hence, the system in (19) can be
solved using a standard control technique [23], [24]. The
spatial controller can be regarded as a controller that
reduces structural vibration in a spatially averaged sense. The
resonant peaks will be particularly targeted by this controller,
which is desirable for our purpose of minimizing structural
vibration.

It can be observed that the control problem associated
with the system described in (19) is nonsingular. This is due to
the existence of feedthrough terms from the disturbance to the
measured output and from the control signal to the performance
output. Had we not corrected the location of in-bandwidth zeros,
the resulting control problem would have been singular.

Designing a controller for the system (19) may result in
a very high-gain controller. This could be attributed to the fact
that the term in (19) does not represent a physical weight on
the control signal. Rather, it represents the effect of truncated
modes on the in-bandwidth dynamics of the system, which is
important in ensuring the robustness of the closed-loop system.
This problem can be fixed by introducing a weight on the control
signal. This can be achieved by rewriting (19) as

(21)

where is a weighting matrix with compatible dimensions.
What makes this system different from (19) is the ex-

istence of matrix in the error output . The matrix
serves as a weighting matrix to balance the controller effort
with respect to the degree of vibration reduction that can
be achieved. This can be shown to be equivalent to adding
a term, , to the numerator of the cost
function, in (18). Setting with smaller elements might
lead to higher vibration reduction but at the expense of a higher
controller gain. In practice, one has to make a compromise
between the level of vibration reduction and controller gain by
choosing a suitable .

To this end, it should be clear that the model correction
performed in the previous section is instrumental in ensuring
robustness of the closed-loop system. One approach to guar-
anteeing closed-loop robustness is to model the truncated
dynamics as an uncertainty block as in [25], [26]. By adding an
appropriate feedthrough term, however, the uncertainty asso-
ciated with the truncated model is significantly reduced. This
is in contrast to the approach in [2]–[4] where an infinite-di-
mensional controller is obtained from an infinite-dimensional
model and a finite-dimensional controller is approximated
afterwards.

The choice for is a direct result of the bandwidth that is
of control significance. If one is interested in controlling the
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(a) (b)

(c) (d)

Fig. 8. Simulation and experimental frequency responses (actuator voltage to sensor voltage [V/V]).

first six modes, then it is sufficient to consider only the first six
modes in the truncated model, i.e., . Since the dimensions
of the plant and optimal controller are similar, one would obtain
a 12th-order controller for . This is advantageous since
the controller has a minimal order necessary to control the first
six modes.

The main purpose of this work is to design controllers that
guarantee vibration reduction in a spatial sense. This
is in contrast to the previous works that deal with pointwise
models [2]–[4], [17]. One possibility in dealing with the ro-
bustness issue is to model the residual uncertainty as a spatially
distributed uncertain block. The methodology presented here
can then be extended to explicitly allow for this uncertainty
description. This work however, is relegated to the future.

VI. CONTROLLER DESIGN

In this section, effectiveness of the spatial control
method will be demonstrated on a laboratory scale apparatus.
A simply-supported flexible beam—such as the one shown

in Fig. 1—with a collocated piezoelectric actuator–sensor
pair attached to it is used in the experiments. The appa-
ratus is shown in Fig. 5. The structure consists of a 60-cm
long uniform aluminum beam of a rectangular cross section
(50 mm 3 mm). The beam is pinned at both ends. A pair
of piezoelectric-ceramic elements are attached symmetrically
to either side of the beam, 50 mm away from one end of the
beam. The piezoceramic elements used in our experiment are
PIC151 patches. These patches are 25–mm wide, 70-mm long
and 0.25-mm thick. The physical parameters of PIC151 are
given in Table I. A model of the composite structure is obtained
via modal analysis. We use the equivalent standardcontrol
problem described in (21) for our spatial controller. Here,

is the output voltage from the piezoelectric sensor, while
is the control input voltage from the controller.

Here, we wish to control only the first six bending modes of
the beam via a SISO controller. Hence, the model is truncated
to include only the first six modes. The control design
procedure will then produce a 12th-order controller. The effect
of out-of-bandwidth modes has to be taken into consideration
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(a) (b)

(c) (d)

Fig. 9. Loop gain [V/V]: simulation and experiment.

to compensate for the neglected dynamics in the truncated
model as discussed in Section IV. Based on the experimental
frequency-response data from actuator voltage to sensor voltage,
the feedthrough term in (10), , is found to
be 0.033 if the first six modes are considered in the model
(see also [27]).

Since the disturbance is assumed to enter the system through
the same channel as the controller, the SISO transfer functions
from and to the transverse deflection of the beam are
the same, i.e., . Incorporating (13) and (14) in (11), we
have

(22)

The feedthrough term is calculated by considering modes
to to obtain a reasonable spatial approximation to
the feedthrough term. A larger can be used instead, but the
value of the feedthrough term would not change significantly
because of the reason described in Section IV. Similarly, the

SISO transfer functions from and to the collocated sensor
voltage are denoted by (10)

(23)

The state-space model of the spatial control problem can
be defined as in (15), with

where

and



HALIM AND MOHEIMANI: EXPERIMENTAL IMPLEMENTATION OF SPATIAL CONTROL 353

Fig. 10. Simulation spatial frequency response: actuator voltage—beam
deflection (open loop) [m/V].

(24)

The spatial weighting function is set equal to one,
which means that all points along the beam are weighted
equally. Based on (20), we can obtain the error output in (21),
, using the orthogonality property in (2), with and as

follows:

(25)

The scalar weighting factor can then be determined to find
a controller with sufficient damping properties and robustness.
Matlab -Analysis and Synthesis Toolbox was used to calculate
our spatial controller based on the system in (21) via a
state-space approach.

VII. EXPERIMENTAL VALIDATIONS

The experiment was set in the Laboratory for Dynamics
and Control of Smart Structures at the University of New-
castle, Australia. The experimental setup is depicted in
Fig. 6. The controller was implemented using a dSpace
DS1103 rapid prototyping Controller Board together with the
MATLAB-Simulink1software. The sampling frequency was set
at 20 KHz. The cutoff frequencies of the two low-pass filters
were set at 3 KHz. A high-voltage amplifier, capable of driving
highly capacitive loads, was used to supply necessary voltage
for the actuating piezoelectric patch. An HP89410A Dynamic

1MATLAB-Simulink is a registered trademark of The MathWorks, Natick,
MA.

Fig. 11. Simulation spatial frequency response: actuator voltage—beam
deflection (closed loop) [m/V].

Fig. 12. Experimental spatial frequency response: actuator voltage—beam
deflection (open loop) [m/V].

Fig. 13. Experimental spatial frequency response: actuator voltage—beam
deflection (closed loop) [m/V].
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(a) (b)

Fig. 14. Simulation and experimentalH norm plot—spatial control.

Signal Analyzer and a Polytec PSV-300 Laser Doppler Scan-
ning Vibrometer were used to obtain frequency responses of
the piezoelectric-laminate beam. Important parameters of the
beam, such as resonant frequencies and damping ratios, were
obtained from the experiment and were used to correct our
model.

Our simulation and experimental results are presented in the
following. The frequency response of the controller is shown
in Fig. 7. It can be observed that the controller has a resonant
nature. This is expected and can be attributed to the highly reso-
nant nature of the beam. That is, the controller tries to apply
a high gain at each resonant frequency. Fig. 8 compares fre-
quency responses of the open-loop and closed-loop systems (ac-
tuator voltage to sensor voltage) for both simulation and exper-
imental results. It can be observed that the performance of the
controller applied to the real system is as expected. The compar-
ison between simulation and experimental frequency responses
shows that the approach in incorporating a feedthrough term into
the truncated model to compensate for the neglected dynamics
works very well. The resonant responses of modes 1–6 of the
system have been reduced considerably once the controller was
introduced.

A comparison of the loop gain up to 1.6 KHz from simulation
and experiment is shown in Fig. 9. Our simulation gives a gain
margin of 11.3 dB at 1.55 KHz and a phase margin of 89.0
at 79.3 Hz. The experiment gives a gain margin of 10.7 dB at
1.55 KHz, and a phase margin of 87.1at 79.6 Hz. Some re-
duction of the stability margin in the real system is expected
because of the phase delay associated with the digital controller
and filters used in the experiment as seen in Fig. 9. Moreover,
there may be a slight difference between our model and the real
plant, i.e., modal damping ratios and resonant frequencies. This
can contribute to the loss of robustness.

Figs. 10 and 11 show the simulated spatial frequency re-
sponses of the uncontrolled and controlled beam, respectively.
Here, is measured from one end of the beam, which is closer
to the patches, while the frequency response is in terms of the

beam’s transverse displacement (displacement inaxis). It
is clear that vibration of the entire beam due to the first six
bending modes has been reduced by the action of the controller.

Next, a Polytec PSV-300 Laser Scanning Vibrometer was
used to obtain the frequency response of the beam’s vibration at
a number of points on the surface. The results allow us to plot the
spatial frequency responses of the uncontrolled and controlled
beam using the experimental results as shown in Figs. 12 and
13. It can be observed that the resonant responses of modes 1–6
have been reduced over the entire beam due to the controller ac-
tion, which is as expected from the simulation (compare with
Figs. 10 and 11). The resonant responses of modes 1–6 have
been reduced by approximately 27, 30, 19.5, 19.5, 15.5, and
8 dB, respectively, over the entire beam. Thus, our spatial
controller minimizes resonant responses of selected vibration
modes over the entire structure, which is desirable for vibration
suppression purposes.

To demonstrate the controller’s effect on the spatial norm
of the system, we have plotted the pointwise norm of the
controlled and uncontrolled beam as a function ofin Fig. 14.
The figures show that the experimental results are very similar
to the simulations. Furthermore, they clearly show the effect of
our spatial controller in reducing the vibration of the beam.
It is obvious that the norm of the entire beam has been
reduced by the action of the controller in a uniform manner. The
largest norm of the uncontrolled beam has been reduced by
approximately 97%, from 3.6 10 to 1.1 10 .

The effectiveness of the controller in minimizing beam’s vi-
bration in time domain can be seen in Fig. 15. A step disturbance
signal with amplitude of 100 V was applied through the piezo-
electric actuator. The velocity response of the beam, at a point
80 mm away from one end of the beam, was observed using the
PSV Laser Vibrometer. The velocity response was filtered by a
bandpass filter from 10 to 750 Hz. The settling time of the ve-
locity response has been reduced considerably.

To show the advantage of the spatial control over the
pointwise control, we performed the following experiment.
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(a) (b)

Fig. 15. Vibration at a point 80 mm away from one end of the beam.

(a) (b)

Fig. 16. Simulation and experimentalH norm plot—pointwise control.

A pointwise controller was designed to minimize the
norm of the closed-loop transfer function from the disturbance

to the deflection at the middle of the beam, i.e., m.
The controller had a gain margin of 14.3 dB and a phase margin
of 77.9 . It was implemented on the beam using the setup in
Fig. 6. In Fig. 16, we have plotted norm of the controlled
and uncontrolled beam as a function of.

Fig. 16 shows the effectiveness of the pointwise control in
local reduction of the norm at and around m. This
is not surprising as the only purpose of the controller is to min-
imize vibration at m. In fact, the pointwise controller
only suppresses the odd-numbered modes since m is
a node for even-numbered modes. Comparing Figs. 14 and 16,
it can be concluded that the spatial controller has an ad-
vantage over the pointwise controller as it minimizes the
vibration throughout the entire structure.

VIII. C ONCLUSION

A spatial controller was designed and implemented on a
piezoelectric-laminate beam. A feedthrough term was added to
correct the gain and locations of in-bandwidth zeros of the trun-
cated (finite dimensional) model. Thus, the neglected dynamics
in the model can be compensated. This model correction is in-
strumental in ensuring the robustness of the closed-loop system.
It was observed that such a controller resulted in suppression of
the transverse deflection of the entire structure by minimizing
the spatial norm of the closed-loop system. The controller
was obtained by solving a standard control problem for a
finite-dimensional system. A number of experiments were per-
formed, which demonstrated the effectiveness of the developed
controller in reducing the structural vibrations on a piezoelec-
tric-laminate beam. It was shown that the spatial controller
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had an advantage over the pointwise control in minimizing
structural vibration of the entire structure. The application of
this spatial control is not confined to a piezoelectric-lami-
nate beam. It may be applied to more general vibration suppres-
sion problems.
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