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Abstract
This paper studies the feedback structure associated with piezoelectric shunt
damping systems and introduces a new impedance structure for multi-mode
piezoelectric shunt damping. The impedance is shown to be realizable using
passive circuit components and digital implementation of the associated
admittance transfer function is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Piezoelectric transducers are under investigation as actuators
and sensors for vibration control in flexible structures.
Piezoelectric materials in current use include poly-vinylidene
fluoride (PVDF), a semi-crystalline polymer film and lead
zirconate titanate (PZT), a piezoelectric ceramic material.
These materials strain when exposed to a voltage and
conversely produce a voltage when strained. The piezoelectric
property is due to the permanent dipole nature of the materials,
which is induced by exposing the material to a strong electric
field while the material is being manufactured. For a
detailed discussion of the electromechanical properties of these
materials, the reader is referred to [1–3].

For vibration control purposes, piezoelectric transducers
are bonded to the body of the base structure using strong
adhesive material. These piezoelectric transducers can be
used as sensors, actuators or both. In a typical active control
problem, a piezoelectric transducer is used as an actuator. A
sensor is used to measure vibration of the base structure and
then a control voltage is applied to the piezoelectric actuator
to minimize the unwanted vibration of the base structure.

An alternative approach is passive control, which is also
referred to as piezoelectric shunt damping. The piezoelectric
transducer is shunted by a passive electric circuit that acts
as a medium for dissipating the mechanical energy of the
base structure. In their original work Hagood and von
Flotow [4, 5] suggested that a series R–L circuit attached
across the conducting surfaces of a piezoelectric transducer can
be tuned to dissipate mechanical energy of the base structure.
They demonstrated the effectiveness of this technique by

tuning the resulting R–L–C circuit to a specific resonance
frequency of the base structure. Furthermore, they proposed
a method to determine an effective value for the resistive
element.

In [6] it was demonstrated that a parallel R–L circuit
could be shunted to the piezoelectric transducer for vibration
reduction purposes and it was shown that similar results to
the series case could be obtained. Later, the same author
demonstrated that the concept could be extended to allow for
multiple-mode shunt damping by introducing current blocking
circuits inside each R–L branch [7, 8]. The problem with
this technique, however, is that the size of the shunting circuit
increases rapidly as the number of modes that are to be
shunt dampened is increased. Reference [9] suggests a more
practical shunt circuit for multiple mode piezoelectric shunt
damping by using current-flowing circuits in each branch. An
alternative multi-mode shunt damping circuit was suggested
by Hollkamp [10]. Although the author conjectures the
effectiveness of this circuit, no straightforward method for
determining the circuit components is proposed.

One of the major difficulties that often arises in imple-
menting these shunt impedances is the fact that one may need
to have access to rather large inductors if the low-frequency
modes are to be shunt dampened. The mainstream approach
to addressing this problem appears to be centered around elec-
tronic implementation of these inductors using Gyrator cir-
cuits [11]. This may be a reasonable proposition if a very small
number of modes are to be shunt dampened. However, for a
large number of modes a more practical solution is needed.

The synthetic impedance circuit suggested in [12] is an
effective means of digital implementation of an impedance
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Figure 1. A piezoelectric laminate shunted to an admittance Y (s).

circuit for piezoelectric shunt damping. This circuit allows us
to implement any admittance transfer function, as long as the
transfer function is stable, and at least proper. Indeed the circuit
may be used to implement active shunts, as opposed to purely
passive shunts. For an overview of current active/passive
techniques, the reader is referred to [13].

Compared to other piezoelectric shunt damping tech-
niques which are based on intuitive ideas, this paper presents
a systematic way of designing the shunt impedance, as well as
a thorough analysis of the feedback structure associated with
the piezoelectric shunt damping systems.

The remainder of the paper continues as follows. Section 2
clarifies the feedback nature of the piezoelectric shunt damping
systems. Section 3 introduces a new impedance structure for
the purpose of piezoelectric shunt damping. It is explained
why this specific structure may prove efficient in suppressing
vibrations of structures. Section 4 contains a proof of closed-
loop stability under the proposed impedance. Section 5
discusses some properties of the proposed admittance structure
while section 6 discusses the robustness issues. Section 7 is
concerned with the problem of optimal tuning of the shunting
admittance. Section 8 includes our experimental results, and
section 9 concludes the paper.

2. Feedback problem associated with a shunted
piezoelectric laminate structure

Let us consider the system depicted in figure 1. Here a
piezoelectric transducer is attached to the surface of a flexible
structure using strong adhesive material. The piezoelectric
transducer is shunted to an electrical admittance, Y (s). The
vector P signifies the direction of polarization vector of the
piezoelectric material. As the structure deforms, possibly due
to a disturbance w(s), an electric charge distribution appears
inside the piezoelectric crystal. This manifests itself in the
form of a voltage difference across the conducting surfaces of
the piezoelectric transducer, v(s), which in turn causes the flow
of electric current, i(s), through the admittance. This causes a
loss of energy. Hence, the electric admittance may be thought
of as a means of extracting mechanical energy from the base
structure via the piezoelectric transducer.

To make the discussion clearer, let us look at the system
in more detail. Figure 2 depicts the electrical equivalent of
the piezoelectric transducer [14]. If the admittance is removed

Figure 2. Electrical equivalent of the system in figure 1.

from the circuit, i.e. if the piezoelectric transducer is left open
circuited, then the voltage measured across the conducting
terminals of the piezoelectric transducer is equivalent to vp(s).
This voltage is entirely due to the disturbances acting on the
structure and/or non-zero initial conditions. It should be clear
that as long as the base structure is not at rest, vp(s) may be
non-zero. To this end, let us assume that vp(s) is related to
w(s) via a transfer function Gvw(s). That is,

vp(s) = Gvw(s)w(s), Y (s) = 0. (1)

The condition Y (s) = 0 in (1) emphasizes that this equation is
valid only if the two terminals of the piezoelectric transducer
are left open circuited.

Now, let us assume that there are no disturbances acting on
the structure. Rather, allow us to assume that a voltage source
is attached across the conducting terminals of the piezoelectric
transducer. In this case, the voltage vp (s) is entirely due to v(s)
and is related to v(s) via a transfer function Gvv(s). That is,

vp(s) = Gvv(s)v(s), w(s) = 0. (2)

The transfer function Gvv(s) may be written in the general
form

Gvv(s) = −
∞∑

i=1

γi

s2 + 2ζiωi s + ω2
i

(3)

where
γi > 0 for i = 1, 2, . . . .

To this end, it should be pointed out that the specific form
of Gvv(s) above is due to the collocated nature of the transfer
function. In other words, if an identical piezoelectric patch
is collocated with the shunted piezoelectric transducer, the
voltage induced in the second transducer will be equivalent,
but 180◦ out of phase with vp(s): for example, see [15, 16].
Also, note that if the piezoelectric transducer is attached to
the structure such that vector P is pointing in the opposite
direction, the negative sign in (3) should be removed. If
the base structure is disturbed by w(s) and a voltage v(s) is
simultaneously applied across the terminals of the piezoelectric
transducer then due to the linearity of the system we may write

vp(s) = Gvw(s)w(s) + Gvv(s)v(s). (4)

From equation (4) it can be deduced that while the
disturbance w(s) is disturbing the base structure, the voltage
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Figure 3. The feedback structure associated with the shunt damping problem in figure 2.

v(s) applied across the piezoelectric terminals may be used to
reduce the effect of this unwanted disturbance. In a typical
feedback control problem, a sensor is used to measure a
property of the structure for feedback. This may be the
acceleration at some point, as measured by an accelerometer,
or even the voltage measured at the open terminals of another
piezoelectric transducer attached to the structure at a different
point.

Shunting the piezoelectric transducer with the admittance
Y (s), as in figure 2, removes the need for an additional sensor.
This, however, is achieved at the expense of having to deal
with a more complicated feedback control problem.

To visualize the underlying feedback control structure, we
need to identify a number of variables such as the control signal,
the measurement, the disturbance and the physical variable that
is to be regulated.

The underlying feedback structure can be identified by
noticing that the current may be written as

i(s) = (vp(s) − v(s))Cp s. (5)

Furthermore,
i(s) = Y (s)v(s). (6)

Equations (4)–(6) suggest the feedback structure depicted in
figure 3. The figure suggests a rather complicated feedback
structure as the controller, Y (s), is itself inside an inner
feedback loop.

Now, consider a system consisting of a base structure
along with two piezoelectric transducers attached to either
sides of the base structure in a collocated manner as in figure 4.
Such a system is easily realizable in a laboratory. Indeed, our
experimental results in section 8 are performed on a similar
system. If the two piezoelectric transducers are identical, we
may write

Gvw(s) = −Gvv(s).

Therefore, the block diagram in figure 3 may be reduced to
that shown in figure 5.

3. A new impedance structure for piezoelectric
shunt damping

Over the past ten years, a number of impedance structures
have been suggested in the literature. This includes the
single-mode shunt damping impedance proposed in [4–6] and
several modifications of this technique to allow for multi-mode

Figure 4. A structure with collocated piezoelectric transducers.

shunt damping [7, 8, 10]. This paper proposes a new class
of admittances suitable for multi-mode piezoelectric shunt
damping. Furthermore, stability and robustness properties of
this class of admittances are analyzed and studied.

In the previous section we demonstrated that the
piezoelectric shunt damping problem is equivalent to a
feedback control problem with a very specific feedback
structure. This understanding of the underlying feedback
structure allows us to interpret the existing results in the
literature in a meaningful way. Furthermore, it enables us to
make new contributions to the field in the form of generating
new classes of high-performance shunt damping impedance
structures.

Notice that in figure 3 the closed-loop transfer function
from the disturbance input w(s) to vp(s) can be written as

Tvpw(s) = vp(s)

w(s)
= Gvw(s)

1 + K (s)G̃vv(s)
(7)

where

G̃vv(s) = −Gvv(s)

and

K (s) = 1

1 + Y (s)
Cps

. (8)

Given the common-pole property of the transfer functions
associated with the base structure, regardless of the nature of
the disturbance, Gvw(s) must have poles that are identical to
those of G̃vv(s). Therefore, the role of the shunting admittance
Y (s) is to move the closed-loop poles of the system deeper into
the left half-plane, i.e. to add more damping to each mode.
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Figure 5. The feedback structure with the disturbance applied to the collocated piezoelectric transducer.

An effective admittance structure for this purpose is

Y (s) =
∑N

i=1
αiω

2
i

s2+2diωi s+ω2
i

1 − ∑N
i=1

αiω
2
i

s2+2diωi s+ω2
i

Cps (9)

where

αi � 0, di > 0, i = 1, 2, . . . , N

and
N∑

i=1

αi = 1. (10)

An immediate choice for the α is αi = 1
N for i = 1, 2, . . . , N .

This will ensure that condition (10) is satisfied. It is
straightforward to verify that for the admittance structure
defined in (9), the effective controller expression in (8) will
be

K (s) = 1 −
N∑

i=1

αiω
2
i

s2 + 2di ωi s + ω2
i

. (11)

This, in turn can be shown to be equivalent to

K (s) =
N∑

i=1

αi s(s + 2diωi)

s2 + 2di ωi s + ω2
i

. (12)

It should be possible to imagine why this specific structure
may be quite effective in reducing unwanted vibrations of
the base structure. Flexible structures are inherently highly
resonant systems whose dynamics consist of a large number
of very lightly damped modes. The admittance suggested
in (9), once shunted to the piezoelectric transducer with the
piezoelectric capacitance of Cp , will result in an equivalent
feedback control problem where the controller K (s) is defined
as in (12). It can be observed that this controller has a highly
resonant structure dictated by the damping factors d1, . . . , dN .
The controller applies a high gain at each specific resonant
frequency. This is done by applying a very narrow bandpass
filter around each resonant frequency of the base structure.

To see the connections with the earlier work, we point
out that if N = 1, then the controller may be tuned only to
one specific resonant frequency, say ω�. In this case, it can be
shown that

Y (s) = ω2
�Cp

s + 2d�ω�

.

Hence, Y (s) effectively represents the series connection
of a resistor R = 2d�

ω�Cp
with an inductor L = 1

ω2
�Cp

shunted across the piezoelectric transducer terminals. This

Figure 6. Equivalent system for study of closed-loop stability.

is the original single-mode shunt damping circuit proposed
by Hagood and von Flotow [4]. Based on this observation,
one may argue that Y (s) in (9) effectively generates a phase
and gain relationship around each resonant frequency that is
similar to those generated by a R–L circuit tuned to that specific
resonant frequency.

4. Closed-loop stability

In this section we study stability properties of the proposed
shunting impedance. By inspection, it can be verified that the
closed-loop stability of the system in figure 3 is equivalent to
the stability of the system in figure 6 with

Ĝ(s) = −sGvv(s) =
M∑

i=1

γi s

s2 + 2ζiωi s + ω2
i

(13)

and

K̂ (s) =
N∑

i=1

αi (s + 2di ωi)

s2 + 2di ωi s + ω2
i

.

The proof of closed-loop stability is rather straightforward
and is based on the observation that K̂ (s) is a strictly positive
real (SPR) transfer function, i.e. K̂ is stable with K̂ (jω) +
K̂ (−jω) > 0 for all ω ∈ R and Ĝ(s) is a positive real (PR)
transfer function, i.e. Ĝ is stable and Ĝ(jω) + Ĝ(−jω) � 0
for all ω ∈ R. The feedback connection of two SISO systems
where one is a SPR and the other is a PR transfer function is
stable with a guaranteed gain margin of infinity (see chapter 10
of [17]). Therefore, the admittance suggested in (9) results
in a closed-loop system that is stable with favorable stability
margins.

It should be pointed out that (13) with M arbitrarily large,
i.e. M � N , is a reasonable finite-dimensional approximation
of (3) (see [18]).
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Figure 7. Piezoelectric laminated simply supported beam.

Figure 8. Piezoelectric laminated plate bounded structure.

5. Properties of the proposed admittance and
implementation issues

Our ultimate goal is to implement the admittance Y (s) digitally
using the synthetic admittance circuit proposed in [12]. For
this to be achievable in an efficient way, Y (s) must satisfy a
number of conditions. It should be a stable transfer function
and it should be at least proper, and preferably strictly proper
with a bandwidth that is not excessively larger than that of
the highest in-bandwidth mode of the base structure that is
to be controlled. In this section we study the structure of the
proposed admittance and will show that it satisfies all the above
conditions.

We first study the stability of Y (s). This can be verified
by observing that the Nyquist plot of

−
M∑

i=1

αiω
2
i

s2 + 2diωi s + ω2
i

(14)

with M � N will never cross the critical point, −1 + j0. This,
along with the feedback structure of Y (s) in (9), establishes
the stability of the admittance Y (s).

Next, we note that the admittance Y (s) can be written as

Y (s) =
∑N

i=1
Cpαiω

2
i s

s2+2diωi s+ω2
i∑N

i=1
αi s(s+2di ωi )

s2+2diωi s+ω2
i

= H(s)

J (s)
.

Now it can be verified that the numerator transfer function,
H(s), is a positive real transfer function, which means

−π

2
� � H(s) � π

2
.

Piezoelectric Shunt
Transducer

Structure

Piezoelectric Actuator
Transducer

Y(s)

z

w

Laser Vibrometer

P
ol

yt
ec

Figure 9. The experimental structure with collocated piezoelectric
transducers.

(a) (b)

Piezoelectric Shunt
Transducers

Piezoelectric Actuator
Transducer

z z

w
w

Figure 10. Experimental piezoelectric laminated structures: (a)
beam and (b) plate. Note that w is the applied disturbance actuator
voltage and z is the displacement at some point on the structure.

Furthermore, it can be verified that

0 < � J (s) < π.

Hence, we may conclude that

−π

2
< � Y (s) <

π

2
,

which means that Y (s) is a SPR transfer function, i.e. the
Nyquist plot of Y (s) is confined to the right half of the complex
plane. An implication of this observation is that Y (s) is
indeed realizable using purely passive circuit components,
i.e. resistors, inductors and capacitors. Such a circuit may
be realized by observing that Y (s) can be written as

Y (s) = Cp
∑N

i=1 αiω
2
i

∏N
�=1,� �=i(s

2 + 2d�ω�s + ω2
�)∑N

i=1 αi(s + 2di ωi)
∏N

�=1,� �=i(s
2 + 2d�ω�s + ω2

�)
.

(15)
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Figure 11. Frequency response (a) |Gvv(s)| and (b) |Gzw(s)|, for
the piezoelectric laminated beam structure. Experimental data
(· · · · · ·) and model obtained using subspace-based system
identification (——).

40 60 80 100 120 140 160 180 200 220 240
– 50

– 40

– 30

– 20

– 10

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

40 60 80 100 120 140 160 180 200 220 240
– 200

– 180

– 160

– 140

– 120

– 100

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

a) 

b) 

Figure 12. Frequency response (a) |Gvv(s)| and (b) |Gzw(s)|, for
the piezoelectric laminated plate structure. Experimental data
(· · · · · ·) and model obtained using subspace-based system
identification (——).

Table 1. Summary of experimental amplitude reduction for both
beam and plate structures.

Mode Beam (dB) Plate (dB)

1 2.0 2.5
2 16.2 13.5
3 19.9 11.0
4 24.1 —
5 — 12.9
6 — 14.8

6. Robustness issues

An interesting property of the admittance proposed in (9) is
its good robustness properties. To make this clearer we point
out that under (9) the closed-loop system is stable with a gain
margin of infinity. Therefore, the spill-over effect due to the
existence of out-of-bandwidth modes will not destabilize the
closed-loop system. As a matter of fact, the spill-over effect
will be minimal since the admittance, and hence the resulting
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Figure 13. Experimental beam undamped (——) and damped
(- - - -) magnitude response of Gzw(s).

equivalent controller K (s) in (8), has a highly resonant nature.
The structure of the admittance Y (s) is such that if the

resonant frequencies ω1, . . . , ωN are slightly different from the
actual resonant frequencies of the base structure, closed-loop
stability is guaranteed. This is a favorable property as these
resonant frequencies are known to change with temperature,
changing load, etc.

A particularly important robustness feature of the
proposed admittance structure is that it maintains closed-loop
stability even if the value of the piezoelectric capacitance in
(9) is estimated incorrectly. A proof of this claim follows.

Let us assume that the actual value of the piezoelectric
capacitance is Cp , while our estimate of it is C̄p = ηCp .
Therefore, the admittance expression in (9) should be modified
to

Y (s) =
∑N

i=1
αiω

2
i

s2+2diωi s+ω2
i

1 − ∑N
i=1

αiω
2
i

s2+2diωi s+ω2
i

C̄ps.

Arguing along similar lines to section 4, we may say that the
stability of the resulting closed-loop system is equivalent to
the stability of the system in figure 6 with

Ĝ(s) = −sGvv(s)

and

K̂ (s) =
1
s

1 + η

s Ỹ (s)

with

Ỹ (s) = 1

Cp
Y (s).

We have already established that Y (s) is a SPR transfer
function. Therefore strict positive realness of Ỹ (s) follows
immediately. Now, it can be proved that K̂ (s) is stable and
that K̂ (jω) + K̂ (−jω) > 0 for all ω ∈ R. Therefore, K̂ (s) is
itself a SPR system. Given that Ĝ(s) is a PR system, we may
conclude that the closed-loop system is stable for any η > 0.

To this end we point out that although the closed-loop
system will not be destabilized, the performance of the system
may severely deteriorate as η deviates from one.
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Figure 14. Simulated open-loop (*) and closed-loop (×) poles of
the piezoelectric laminated beam.

7. Optimal tuning of the admittance

The structure of the admittance in (9) guarantees closed-loop
stability of the system. In order to achieve good performance,
appropriate values for the damping parameters d1, d2, . . . , dN

need to be determined. This may be done by seeking a solution
to the following optimization problem:

d∗
1 , d∗

2 , . . . , d∗
N = arg min ‖Tvpw‖2. (16)

This is a non-convex optimization problem that could have
many local minima. Typically, one would attempt to solve the
problem using a gradient descent technique [19]. In doing
so, one would need to choose a starting point from which the
optimization process may start. Given that for all positive
d1, d2, . . . , dN the closed-loop system is stable, any positive
value may be considered acceptable. However, considering
the structure of the system, it may be possible to find a set of
damping ratios reasonably close to a minimum.

The transfer function Gvv(s) in (3) is a high-order system
of very lightly damped resonant modes. Depending on the
geometry of the structure, these modes may be reasonably far
away from one another. Given the highly localized nature of
Y (s), it may be a reasonable assumption to consider the effect
of each individual bandpass section of the admittance on the
specific mode of the base structure. Doing so, one may then
search for a value of the damping ratio that would place the
closed-loop poles of the system as deep into the left half of
the complex plane as possible. A repeat of this procedure for
every single mode that is to be controlled may result in a good
starting point for the optimization problem (16).

8. Experimental results

In this section, we apply the above procedure to two flexible
structures; the piezoelectric laminate beam described in [20],
and the piezoelectric laminate plate described in [21]. The
beam apparatus consists of a uniform aluminum bar with
rectangular cross section and experimentally pinned boundary
conditions at both ends. Likewise, the plate structure
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Figure 15. Experimental plate undamped (——) and damped
(- - - -) magnitude response of Gzw(s).

also consists of an aluminum rectangular plate with pinned
boundary conditions at all external edges.

The two experimental structures are shown in figures 7
and 8, respectively. For both structures, two piezoelectric
patches (PIC151) are bonded to the surface in a collocated
fashion using strong adhesive material, as shown in figures 9
and 10. On each structure, one piezoelectric patch is used as
an actuator to generate a disturbance through the structure, and
the other as a shunting transducer.

When observing the dynamics of a structure it is
common practice to consider the transfer function between the
displacement at a point on the structure z(s) and the actuator
voltage w(s), Gzw(s), as shown in figures 9 and 10, and also
the dynamics between the shunting piezoelectric voltage and
the actuator voltage, Gvv(s).

Using a Polytec laser scanning vibrometer (PSV-300) and
a Hewlett Packard spectrum analyzer (35670A), experimental
frequency responses were obtained for Gzw(s) and Gvv(s).
Using a subspace-based system identification technique [22],
a model was fitted to the experimental data. The measured
and identified magnitude responses are shown in figures 11
and 12. In the bandwidth of interest, the identified models were
found to be good representations of the piezoelectric laminate
systems.

The first four modes of the beam and the first six modes of
the plate are to be controlled by a shunt impedance Y (s) given
in equation (9). Using the procedure explained in section 7,
and the identified models, an optimal set of damping ratios
for Y (s) were determined for each structure. The admittances
were digitally implemented, using the synthetic admittance
circuit described in [12], and then applied to the shunt
transducers. A comparison of the experimental undamped
and damped experimental responses for |Gzw(s)|, are shown
in figures 13 and 15. The experimental resonance magnitudes
were successfully reduced, as summarized in table 1. Figure 14
shows the simulated closed-loop and open-loop poles. We can
see from figure 14, that the closed-loop poles have been pushed
further to the left on the real–imaginary plane.

It can be observed that the proposed impedances are very
effective in reducing vibration of the base structures. However,
their performance for the first mode is, in both cases, very
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limited. This can be attributed to the locations at which the
piezoelectric shunt transducers are placed on the beam and
plate structure.

9. Conclusions

This paper suggests that the problem of piezoelectric shunt
damping may be viewed as a feedback control problem in
which the controller, itself, is inside an inner feedback loop.
Based on this observation a new class of shunt systems was in-
troduced. Using the feedback structure, the robustness proper-
ties of the shunted system were studied. Finally, the proposed
method was experimentally verified on two structures.
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