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Abstract

The purpose of this note is to introduce an alternative procedure to the mode acceleration method when the underlying structure model
includes damping. We will show that the problem can be cast as a convex optimization problem that can be solved via linear matrix
inequalities.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Strictly speaking, dynamics of a large number of
systems such as structures, acoustic enclosures, etc., consist
of an in5nite number of modes. Dynamics of these systems
are known to be governed by certain partial di6erential
equations. These partial di6erential equations are often dis-
cretized using the modal analysis procedure. As a result of
this discretization the partial di6erential equation is approx-
imated by an in5nite sum. However, it is well-known that in
order to represent the dynamics of such systems, including
a large number of modes in the series will su8ce (Hughes,
1987).

For control design purposes, these modes can be catego-
rized into two groups. These are the in-bandwidth modes
(those modes that lie within the bandwidth of interest from
the control point of view), and the out-of-bandwidth modes.
In control design problems, very often the in5nite series
is truncated by removing the out-of-bandwidth modes and
keeping those modes that lie within the bandwidth of inter-
est. Poles of the truncated model are precisely the same as
the in-bandwidth poles of the in5nite dimensional system.
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However, zeros of the truncated model may be signi5cantly
di6erent from those of the actual system. A controller that
is designed using such a model may perform poorly when
implemented on the real system as the performance of the
feedback controller is largely dictated by the open loop
zeros of the underlying system. It is, therefore, important to
improve the in-bandwidth model of the system so that high
performance controllers can be designed.

One approach to minimizing the truncation error is to
add a feed-through term to the truncated model, where the
feed-through term is made up of the sum of DC contents of
all the truncated high-frequency modes. In the aeroelasticity
literature this method is referred to as themode acceleration
method (Bisplingho6 & Ashley, 1962). The mode acceler-
ation method will result in zero error at the DC. However,
the error will increase as we move to higher frequencies
within the bandwidth of interest. Furthermore, this method
is not optimal by any measure. In Moheimani (2000), it is
shown that a feed-through term can be obtained by mini-
mizing the weighted H2 norm of the error system and an
analytic solution to the optimization problem is presented.
In Moheimani and Clark (2000), the same problem is ad-
dressed by adding an out-of-bandwidth mode to the system,
hence reducing the in-bandwidth error even further than that
reported in Moheimani (2000).

All of the results reported in above references are devel-
oped for models that have zero damping associated with
all the modes. This will not be a cause of concern as long
as the actual damping terms are very small. This may be
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true for some systems, however, when the underlying struc-
ture has signi5cant damping, the procedures reported in the
literature may not perform in a satisfactory manner. This
note is aimed at developing a procedure for minimizing the
in-bandwidth error when the underlying system may have
signi5cant damping associated with each mode. Our ap-
proach is to set up an optimization problem and solve it using
convex optimization techniques (Boyd, El Ghaoui, Feron,
& Balakrishnan, 1994). The problem addressed in this note
is indeed a model reduction problem, where the underly-
ing system possesses a very speci5c structure. This allows
for the problem to be cast as a convex optimization prob-
lem. To this end it should be pointed out that the LMI
approach to model reduction has been investigated in the
literature, and it has been shown that a solution can be ob-
tained by solving a set of LMIs coupled by a nonconvex rank
condition (Grigoriadis, 1995, 1997). This speci5c solution,
however, is of little use due to this nonconvex coupling con-
dition. It turns out that the structure of the problem at hand
allows for a convex solution, as illustrated in the remainder
of this note.

2. Problem statement

Dynamics of many systems such as Hexible beams and
plates, strings, acoustic ducts and enclosures are governed
by speci5c partial di6erential equations. For example,
dynamics of a thin beam is governed by Bernoulli–Euler
beam equation (Meirovitch, 1990) and its associated bound-
ary conditions. These partial di6erential equations are often
discretized using the modal analysis procedure (Meirovitch,
1986). Following this procedure, one would typically
obtain a model of the form G(s) =

∑∞
i=1 �i=(s

2 + !2
i ).

Associated with each mode, there exists a speci5c level
of damping, which is often ignored at earlier stages of the
analysis. For control design purposes the series is truncated
by removing those high frequency modes that lie out of
the bandwidth of interest. That is G(s) is approximated by
GN (s) =

∑N
i=1 �i=(s

2 + !2
i ).

It can be observed that poles of GN (s) are similar to the
5rst N poles of G(s). However, as a result of the truncation,
zeros of GN (s) may be di6erent from the in-bandwidth zeros
of G(s). The reason for this is that each truncated mode
does contain a DC term. Removing these high frequency
modes generates an error that might be signi5cant at low
frequencies. The problem is more severe if the actuator and
sensor are collocated as noted in Clark (1997). This problem
can be addressed by adding a feed-through term to GN (s).
That is, ĜN (s) =

∑N
i=1 �i=(s

2 + !2
i ) +

∑∞
i=N+1 �i=!

2
i .

This technique is referred to as the mode acceleration
method (see Bisplingho6 and Ashley, 1962, p. 350). The
feed-through term added to GN (s) is the sum of DC con-
tents of all the truncated modes. This reduces the error at
!=0 to zero. However, the error will increase as we move
to higher frequencies within the bandwidth of interest. In

Moheimani and Clark (2000) and Moheimani (2000) it is
suggested that an optimization problem can be set up to re-
duce the in-bandwidth error. The solutions given in these
references are optimal in the H2 sense. However, it is as-
sumed that the e6ect of damping on all the modes can be
ignored. In this note, we allow for each mode to include
a speci5c amount of damping and we develop a convex
optimization based solution to the problem. Furthermore, we
allow for multi-variable models in our analysis.

3. Optimization

Consider the multi-variable input–output model of a struc-
ture obtained via modal analysis procedure

GM(s) =
M∑
i=1

�i

s2 + 2�i!is+ !2
i
; (1)

where M may be a large number and �i ∈Rm×n for
i = 1; 2; : : : ; M .

This model is truncated by keeping the 5rst N modes, i.e.,

GN(s) =
N∑
i=1

�i

s2 + 2�i!is+ !2
i
: (2)

A feed-through term is then added to (2)

ĜN(s) =
N∑
i=1

�i

s2 + 2�i!is+ !2
i
+ K; (3)

where the optimal K∈Rm×n is to be determined such that:

K∗ = arg min
K∈Rm×n

‖W(s)(GM(s)− ĜN(s))‖22: (4)

Here W(s) is a low-pass weighting function whose pur-
pose is to emphasize the in-bandwidth error. The cut-o6
frequency of this 5lter is typically chosen to lie within the
range !N 6!6!N+1.

The above transfer functions can be represented in state
space form as follows:

GN(s)
s=
[
A B
C 0

]
; GM(s) s=


A 0 B
0 A2 B2
C C2 0


 ;

W(s) s=
[
Aw Bw
Cw 0

]

with appropriate values for A, B, C, A2, B2 and C2. Using
the above notation, an expression for the error system can
be obtained as follows:

E(s) s=W(s)(GM(s)− ĜN(s))

s=
[
Aw Bw
Cw 0

]
×



A 0 B
0 A2 B2
C C2 0


−

[
A B
C K

]
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s=
[
Aw Bw
Cw 0

]
×
[
A2 B2
C2 −K

]

s=


Aw BwC2 −BwK
0 A2 B2
Cw 0 0




s=

[
LA LB1K + LB2
LC 0

]
;

where

LA =

[
Aw BwC2

0 A2

]
; LB1 =

[−Bw
0

]
;

LB2 =

[
0

B2

]
; LC=

[
Cw 0

]
:

Now, it is observed thatH2 norm of the error system, E(s)
can be expressed as (Boyd et al., 1994)

‖E(s)‖22 = tr{ LCP LC
′}; (5)

where tr(Q) represents the trace of matrixQ and P=P′¿ 0
is the solution to the following Lyapunov inequality

LAP+ P LA
′
+ ( LB1K + LB2)( LB1K + LB2)′¡ 0: (6)

Therefore, K∗ can be determined by solving the following
eigenvalue problem

minimize tr{ LCP LC
′}

subject to

[
LAP+ P LA

′ LB1K + LB2

K LB′
1 + LB′

2 −I

]
¡ 0; P¿ 0:

Now, a di6erent performance measure for minimizing
the in-bandwidth error is considered, i.e., the H∞ norm.
The problem is then to determine K∗, where

K∗ = arg min
K∈Rm×n

‖W(s)(GM(s)− ĜN(s))‖∞: (7)

Strict Bounded Real Lemma (Petersen, Anderson, &
Jonckheere, 1991) implies that the inequality ‖ LC(sI −
LA)−1( LB1K + LB2)‖∞¡� holds if and only if there exists a
matrix P¿ 0 such that

LA
′
P+ P LA +

1
�2
P( LB1K + LB2)( LB1K + LB2)′P

+ LC
′ LC¡ 0: (8)

It is also noticed that (8) holds if and only if there exists
a matrix Q¿ 0 such that

Q LA
′
+ LAQ+

1
�2

( LB1K + LB2)( LB1K + LB2)′

+Q LC
′ LCQ¡ 0: (9)

It is now possible to transform (9) into a linear matrix
inequality using the Schur complement (Boyd et al., 1994).
That is,

Q LA

′
+ LAQ Q LC

′ LB1K + LB2
LCQ −I 0

( LB1K + LB2)′ 0 −�2I


¡ 0: (10)

Now, the optimization problem (7) can be solved via the
solution to the following eigenvalue problem:
minimize �

subject to



Q LA

′
+ LAQ Q LC

′ LB1K + LB2
LCQ −I 0

( LB1K + LB2)′ 0 −�I


¡ 0;

Q¿ 0:

4. Simulation results

Simulation results are presented in this section to demon-
strate the e6ectiveness of the proposed LMI approach.MAT-
LAB LMI toolbox is used to perform the LMI optimizations
explained in Section 3.

Here, a Hexible structure system is considered: a plate
with pinned boundary conditions. Two piezoelectric ceramic
patches are attached symmetrically to either side of the plate,
which work as an actuator and a sensor, respectively. Piezo-
electric actuators and sensors have been used in many vibra-
tion control applications of Hexible structures (Moheimani
& Ryall, 1999; Clark, Saunders, & Gibbs, 1998; Dimitriadis,
Fuller, & Rogers, 1991).

The structure consists of an aluminum plate of 800 mm×
600 mm×4 mm, which is pinned all around. Two identical
and collocated piezoelectric ceramic patches (72:4 mm ×
72:4 mm × 0:191 mm) are used. The plate model is shown
in Fig. 1. For dimension and other physical properties of the
structure, refer to Halim and Moheimani (2003).

A model of the structure is obtained via modal analysis
technique (Meirovitch, 1986; Reismann, 1988). The trans-
fer function from the actuator-voltage to the sensor-voltage
has a similar form with (1) if the model is truncated up to
M modes. In the simulation, only the 5rst six modes are in-
cluded in the truncated plate model, GN (s), i.e. N = 6. The
feed-through term calculation is based on the higher-order
model of 25 modes, GM (s), i.e. M = 25. A low-pass 5l-
ter of 4th order, with the cut-o6 frequency of 249:7 Hz, is
used in the simulation. The cut-o6 frequency is chosen to be
between the 6th and 7th resonant frequencies.

Fig. 2 shows the comparison of the frequency response
(magnitude) of those two models. It can be observed that the
zeros of the truncated model, GN (s), are signi5cantly di6er-
ent from GM (s) since the e6ect of out-of-bandwidth modes
are ignored. Furthermore, there are also gain di6erences
between the two models, especially at low frequencies.
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a piezoelectric patch

800 mm

600 mm

154 mm
142 mm

Fig. 1. The plate model.
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Fig. 2. Comparison of frequency responses (magnitude) of GN (s) and
GM (s).

An H2 norm approach for obtaining the feed-through
term is considered. The LMI optimization searches for the
feed-through term that minimizes the H2 norm of the error
system described in (4). Fig. 3 shows the corrected truncated
model, ĜN (s), in comparison with the higher-order model,
GM (s). The frequency responses with frequency up to cut-o6
frequency are plotted since the model is only intended to be
corrected up to that frequency. The zeros of the corrected
model are now closer to the zeros of higher-order model.
The gain di6erences of the two models are also smaller due
to an additional gain contributed by the feed-through term
of the corrected model.

Similarly, the H∞ norm approach is used to obtain the
feed-through term that minimizes the H∞ norm of the
error system described in (7). Fig. 4 compares the corrected
truncated model, ĜN (s), and the higher-order model,GM (s).
Compared to Fig. 2, the zeros and the gain of the corrected
model are closer to those of higher-order model. However,
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Fig. 3. Comparison of frequency responses (magnitude) of ĜN (s) and
GM (s): H2 norm approach.
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Fig. 4. Comparison of frequency responses (magnitude) of ĜN (s) and
GM (s): H∞ norm approach.

the result for the H∞ norm approach, at frequencies lower
than 215 Hz, is worse than that of the H2 norm approach
(compare with Fig. 3). To analyze this behavior, the error
frequency response for both approaches need to be plotted.

Fig. 5 shows the error frequency response (magnitude)
forH2 norm andH∞ norm approaches. From zero frequency
up to frequency of 214:4 Hz, the error of the H2 norm ap-
proach is less than that of H∞ norm approach. This is rea-
sonable since the H2 norm approach minimizes the error
system across the frequency bandwidth. In contrast, the H∞
norm approach minimizes the H∞ norm of the error system,
which usually occurs at a higher frequency. This means that
for a better performance at low frequencies, a higher order
low-pass 5lter is desirable in order to reduce the magni-
tude of error at out-of-bandwidth frequencies. However, as a
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consequence, the H∞ norm approach has a better perfor-
mance at higher frequencies.

This note essentially provides an alternative way of
obtaining the feed-through term for model correction. The
performances of our LMI based approaches with the mode
acceleration method can now be compared. In Fig. 5, the er-
ror due to the mode acceleration method is also plotted. As
expected, the error is zero at !=0 since the method corrects
the zero-frequency gain of the truncated model. However,
the error increases exponentially as frequency increases. At
frequencies higher than 198:35 Hz, the error of the mode
acceleration method exceeds that of our LMI based
approaches as shown in Fig. 5.

5. Conclusion

An alternative procedure to the mode acceleration method
is introduced using a convex optimization approach. Two
approaches are discussed, which are the minimizations of
the H2 and H∞ norms of the error system, respectively. The
H2 norm approach out-performs the H∞ norm approach at
lower frequencies, while the H∞ norm approach has a better

high-frequency performance. These approaches perform
better at higher frequencies than the mode acceleration
method.
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